BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12820897)

  • 1. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane.
    Ramjeesingh M; Kidd JF; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Sep; 374(Pt 3):793-7. PubMed ID: 12820897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability.
    Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ
    Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trafficking of immature DeltaF508-CFTR to the plasma membrane and its detection by biotinylation.
    Luo Y; McDonald K; Hanrahan JW
    Biochem J; 2009 Apr; 419(1):211-9, 2 p following 219. PubMed ID: 19053947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator.
    Huang P; Liu Q; Scarborough GA
    Anal Biochem; 1998 May; 259(1):89-97. PubMed ID: 9606148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted quantitation of overexpressed and endogenous cystic fibrosis transmembrane conductance regulator using multiple reaction monitoring tandem mass spectrometry and oxygen stable isotope dilution.
    Jiang H; Ramos AA; Yao X
    Anal Chem; 2010 Jan; 82(1):336-42. PubMed ID: 19947594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface expression of the cystic fibrosis transmembrane conductance regulator mutant DeltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature.
    Heda GD; Marino CR
    Biochem Biophys Res Commun; 2000 May; 271(3):659-64. PubMed ID: 10814518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels.
    Routaboul C; Norez C; Melin P; Molina MC; Boucherle B; Bossard F; Noel S; Robert R; Gauthier C; Becq F; Décout JL
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1023-35. PubMed ID: 17578899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGFbeta down-regulation of the CFTR: a means to limit epithelial chloride secretion.
    Howe KL; Wang A; Hunter MM; Stanton BA; McKay DM
    Exp Cell Res; 2004 Aug; 298(2):473-84. PubMed ID: 15265695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild type, G551D, and F508del cystic fibrosis transmembrane conductance regulator chloride channels.
    Noel S; Faveau C; Norez C; Rogier C; Mettey Y; Becq F
    J Pharmacol Exp Ther; 2006 Oct; 319(1):349-59. PubMed ID: 16829626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6.
    Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ
    Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis.
    Sugita M; Kongo H; Shiba Y
    Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NDPK-A (but not NDPK-B) and AMPK alpha1 (but not AMPK alpha2) bind the cystic fibrosis transmembrane conductance regulator in epithelial cell membranes.
    Crawford RM; Treharne KJ; Best OG; Riemen CE; Muimo R; Gruenert DC; Arnaud-Dabernat S; Daniel JY; Mehta A
    Cell Signal; 2006 Oct; 18(10):1595-603. PubMed ID: 16466905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological and signaling properties of endogenous P2Y1 receptors in cystic fibrosis transmembrane conductance regulator-expressing Chinese hamster ovary cells.
    Marcet B; Chappe V; Delmas P; Verrier B
    J Pharmacol Exp Ther; 2004 May; 309(2):533-9. PubMed ID: 14742736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.