These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 12820899)
1. Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. Bignone PA; Baines AJ Biochem J; 2003 Sep; 374(Pt 3):613-24. PubMed ID: 12820899 [TBL] [Abstract][Full Text] [Related]
2. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Song Y; Antoniou C; Memic A; Kay BK; Fung LW Protein Sci; 2011 May; 20(5):867-79. PubMed ID: 21412925 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha-beta spectrin interaction to neuritogenesis. Bignone PA; King MD; Pinder JC; Baines AJ J Biol Chem; 2007 Jan; 282(2):888-96. PubMed ID: 17088250 [TBL] [Abstract][Full Text] [Related]
4. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Li Q; Fung LW Biochemistry; 2009 Jan; 48(1):206-15. PubMed ID: 19072330 [TBL] [Abstract][Full Text] [Related]
5. Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Sevinc A; Fung LW Cell Mol Biol Lett; 2011 Dec; 16(4):595-609. PubMed ID: 21866423 [TBL] [Abstract][Full Text] [Related]
6. Yeast two-hybrid and itc studies of alpha and beta spectrin interaction at the tetramerization site. Sevinc A; Witek MA; Fung LW Cell Mol Biol Lett; 2011 Sep; 16(3):452-61. PubMed ID: 21786033 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. Mehboob S; Song Y; Witek M; Long F; Santarsiero BD; Johnson ME; Fung LW J Biol Chem; 2010 May; 285(19):14572-84. PubMed ID: 20228407 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of the alpha N-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Mehboob S; Jacob J; May M; Kotula L; Thiyagarajan P; Johnson ME; Fung LW Biochemistry; 2003 Dec; 42(49):14702-10. PubMed ID: 14661984 [TBL] [Abstract][Full Text] [Related]
9. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Glantz SB; Cianci CD; Iyer R; Pradhan D; Wang KK; Morrow JS Biochemistry; 2007 Jan; 46(2):502-13. PubMed ID: 17209560 [TBL] [Abstract][Full Text] [Related]
10. Phospholipid binding by proteins of the spectrin family: a comparative study. An X; Guo X; Gratzer W; Mohandas N Biochem Biophys Res Commun; 2005 Feb; 327(3):794-800. PubMed ID: 15649416 [TBL] [Abstract][Full Text] [Related]
11. Characterization and expression of a heart-selective alternatively spliced variant of alpha II-spectrin, cardi+, during development in the rat. Zhang Y; Resneck WG; Lee PC; Randall WR; Bloch RJ; Ursitti JA J Mol Cell Cardiol; 2010 Jun; 48(6):1050-9. PubMed ID: 20114050 [TBL] [Abstract][Full Text] [Related]
13. Thermal stabilities of brain spectrin and the constituent repeats of subunits. An X; Zhang X; Salomao M; Guo X; Yang Y; Wu Y; Gratzer W; Baines AJ; Mohandas N Biochemistry; 2006 Nov; 45(45):13670-6. PubMed ID: 17087521 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. Wang KK; Posmantur R; Nath R; McGinnis K; Whitton M; Talanian RV; Glantz SB; Morrow JS J Biol Chem; 1998 Aug; 273(35):22490-7. PubMed ID: 9712874 [TBL] [Abstract][Full Text] [Related]
15. Studies of the erythrocyte spectrin tetramerization region. Park S; Mehboob S; Luo BH; Hurtuk M; Johnson ME; Fung LW Cell Mol Biol Lett; 2001; 6(3):571-85. PubMed ID: 11598635 [TBL] [Abstract][Full Text] [Related]
16. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. Kennedy SP; Weed SA; Forget BG; Morrow JS J Biol Chem; 1994 Apr; 269(15):11400-8. PubMed ID: 8157672 [TBL] [Abstract][Full Text] [Related]
17. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. Ziemnicka-Kotula D; Xu J; Gu H; Potempska A; Kim KS; Jenkins EC; Trenkner E; Kotula L J Biol Chem; 1998 May; 273(22):13681-92. PubMed ID: 9593709 [TBL] [Abstract][Full Text] [Related]
18. Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. Salomao M; An X; Guo X; Gratzer WB; Mohandas N; Baines AJ Proc Natl Acad Sci U S A; 2006 Jan; 103(3):643-8. PubMed ID: 16407147 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. Kotula L; DeSilva TM; Speicher DW; Curtis PJ J Biol Chem; 1993 Jul; 268(20):14788-93. PubMed ID: 8325856 [TBL] [Abstract][Full Text] [Related]
20. The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: Fluorescence and molecular dynamics studies of free and bound alpha spectrin. Song Y; Pipalia NH; Fung LW Protein Sci; 2009 Sep; 18(9):1916-25. PubMed ID: 19593814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]