These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 12820968)

  • 1. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II.
    Fabrega C; Shen V; Shuman S; Lima CD
    Mol Cell; 2003 Jun; 11(6):1549-61. PubMed ID: 12820968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the mRNA capping apparatus of Candida albicans.
    Schwer B; Lehman K; Saha N; Shuman S
    J Biol Chem; 2001 Jan; 276(3):1857-64. PubMed ID: 11035009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes.
    Pei Y; Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Jul; 276(30):28075-82. PubMed ID: 11387325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights to how mammalian capping enzyme reads the CTD code.
    Ghosh A; Shuman S; Lima CD
    Mol Cell; 2011 Jul; 43(2):299-310. PubMed ID: 21683636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.
    Doamekpor SK; Sanchez AM; Schwer B; Shuman S; Lima CD
    Genes Dev; 2014 Jun; 28(12):1323-36. PubMed ID: 24939935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II.
    Ho CK; Sriskanda V; McCracken S; Bentley D; Schwer B; Shuman S
    J Biol Chem; 1998 Apr; 273(16):9577-85. PubMed ID: 9545288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation.
    Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus.
    Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S
    J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A; Shuman S; Lima CD
    Mol Cell; 2008 Nov; 32(4):478-90. PubMed ID: 19026779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent subunit interactions among fungal mRNA 5'-capping machineries.
    Takagi T; Cho EJ; Janoo RT; Polodny V; Takase Y; Keogh MC; Woo SA; Fresco-Cohen LD; Hoffman CS; Buratowski S
    Eukaryot Cell; 2002 Jun; 1(3):448-57. PubMed ID: 12455993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus.
    Gu M; Rajashankar KR; Lima CD
    Structure; 2010 Feb; 18(2):216-27. PubMed ID: 20159466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain.
    Cho EJ; Rodriguez CR; Takagi T; Buratowski S
    Genes Dev; 1998 Nov; 12(22):3482-7. PubMed ID: 9832501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase.
    Ho CK; Lehman K; Shuman S
    Nucleic Acids Res; 1999 Dec; 27(24):4671-8. PubMed ID: 10572165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II.
    Bharati AP; Singh N; Kumar V; Kashif M; Singh AK; Singh P; Singh SK; Siddiqi MI; Tripathi T; Akhtar MS
    Sci Rep; 2016 Aug; 6():31294. PubMed ID: 27503426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of the Candida albicans gene for mRNA 5'-triphosphatase: association of mRNA 5'-triphosphatase and mRNA 5'-guanylyltransferase activities is essential for the function of mRNA 5'-capping enzyme in vivo.
    Yamada-Okabe T; Mio T; Matsui M; Kashima Y; Arisawa M; Yamada-Okabe H
    FEBS Lett; 1998 Sep; 435(1):49-54. PubMed ID: 9755857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Getting a grip on the CTD of Pol II.
    Greenleaf A
    Structure; 2003 Aug; 11(8):900-2. PubMed ID: 12906819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
    Jones JC; Phatnani HP; Haystead TA; MacDonald JA; Alam SM; Greenleaf AL
    J Biol Chem; 2004 Jun; 279(24):24957-64. PubMed ID: 15047695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II.
    Suh H; Ficarro SB; Kang UB; Chun Y; Marto JA; Buratowski S
    Mol Cell; 2016 Jan; 61(2):297-304. PubMed ID: 26799764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo.
    Takase Y; Takagi T; Komarnitsky PB; Buratowski S
    Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.