BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 12820977)

  • 1. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast.
    González-Barrera S; Cortés-Ledesma F; Wellinger RE; Aguilera A
    Mol Cell; 2003 Jun; 11(6):1661-71. PubMed ID: 12820977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes.
    Dong Z; Fasullo M
    Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast.
    Nag DK; Cavallo SJ
    BMC Mol Biol; 2007 Dec; 8():120. PubMed ID: 18166135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverted repeat-stimulated sister-chromatid exchange events are RAD1-independent but reduced in a msh2 mutant.
    Nag DK; Fasullo M; Dong Z; Tronnes A
    Nucleic Acids Res; 2005; 33(16):5243-9. PubMed ID: 16166656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal complex.
    Zenvirth D; Loidl J; Klein S; Arbel A; Shemesh R; Simchen G
    Genes Cells; 1997 Aug; 2(8):487-98. PubMed ID: 9348039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication.
    Cortés-Ledesma F; Tous C; Aguilera A
    Nucleic Acids Res; 2007; 35(19):6560-70. PubMed ID: 17905819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae.
    Kang LE; Symington LS
    Mol Cell Biol; 2000 Dec; 20(24):9162-72. PubMed ID: 11094068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks.
    Shim EY; Ma JL; Oum JH; Yanez Y; Lee SE
    Mol Cell Biol; 2005 May; 25(10):3934-44. PubMed ID: 15870268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange.
    Muñoz-Galván S; Tous C; Blanco MG; Schwartz EK; Ehmsen KT; West SC; Heyer WD; Aguilera A
    Mol Cell Biol; 2012 May; 32(9):1592-603. PubMed ID: 22354996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid.
    Muñoz-Galván S; Jimeno S; Rothstein R; Aguilera A
    PLoS Genet; 2013; 9(1):e1003237. PubMed ID: 23357952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination.
    Furuse M; Nagase Y; Tsubouchi H; Murakami-Murofushi K; Shibata T; Ohta K
    EMBO J; 1998 Nov; 17(21):6412-25. PubMed ID: 9799249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of repair of replication-born double-strand breaks by sister chromatid recombination in yeast.
    Gómez-González B; Ortega P; Aguilera A
    Methods Enzymol; 2021; 661():121-138. PubMed ID: 34776209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast.
    Prudden J; Evans JS; Hussey SP; Deans B; O'Neill P; Thacker J; Humphrey T
    EMBO J; 2003 Mar; 22(6):1419-30. PubMed ID: 12628934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
    Cousineau I; Abaji C; Belmaaza A
    Cancer Res; 2005 Dec; 65(24):11384-91. PubMed ID: 16357146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways.
    DeMase D; Zeng L; Cera C; Fasullo M
    DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination.
    Mozlin AM; Fung CW; Symington LS
    Genetics; 2008 Jan; 178(1):113-26. PubMed ID: 18202362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.
    Signon L; Malkova A; Naylor ML; Klein H; Haber JE
    Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.