These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 12820996)
1. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. van Beelen P; Verbruggen EM; Peijnenburg WJ Chemosphere; 2003 Aug; 52(7):1153-62. PubMed ID: 12820996 [TBL] [Abstract][Full Text] [Related]
2. Methods for deriving pesticide aquatic life criteria. TenBrook PL; Tjeerdema RS; Hann P; Karkoski J Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939 [TBL] [Abstract][Full Text] [Related]
3. Methods for deriving pesticide aquatic life criteria for sediments. Fojut TL; Vasquez ME; Poulsen AH; Tjeerdema RS Rev Environ Contam Toxicol; 2013; 224():97-175. PubMed ID: 23232920 [TBL] [Abstract][Full Text] [Related]
4. Statistical uncertainty in hazardous terrestrial concentrations estimated with aquatic ecotoxicity data. Golsteijn L; van Zelm R; Hendriks AJ; Huijbregts MA Chemosphere; 2013 Sep; 93(2):366-72. PubMed ID: 23735489 [TBL] [Abstract][Full Text] [Related]
5. Regression study of environmental quality objectives for soil, fresh water, and marine water, derived independently. Vega MM; Urzelai A; Angulo E Ecotoxicol Environ Saf; 1997 Dec; 38(3):210-23. PubMed ID: 9469871 [TBL] [Abstract][Full Text] [Related]
6. Acute toxicity value extrapolation with fish and aquatic invertebrates. Buckler DR; Mayer FL; Ellersieck MR; Asfaw A Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993 [TBL] [Abstract][Full Text] [Related]
7. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron. Brock TC; Crum SJ; Deneer JW; Heimbach F; Roijackers RM; Sinkeldam JA Environ Pollut; 2004 Aug; 130(3):403-26. PubMed ID: 15182972 [TBL] [Abstract][Full Text] [Related]
8. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis. Traas TP; Luttik R; Jongbloed RH Ecotoxicol Environ Saf; 1996 Aug; 34(3):264-78. PubMed ID: 8812195 [TBL] [Abstract][Full Text] [Related]
9. Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Kwok KW; Leung KM; Lui GS; Chu SV; Lam PK; Morritt D; Maltby L; Brock TC; Van den Brink PJ; Warne MS; Crane M Integr Environ Assess Manag; 2007 Jan; 3(1):49-67. PubMed ID: 17283595 [TBL] [Abstract][Full Text] [Related]
10. Ecological risk assessment on a cadmium contaminated soil landfill--a preliminary evaluation based on toxicity tests on local species and site-specific information. Chen CM; Liu MC Sci Total Environ; 2006 Apr; 359(1-3):120-9. PubMed ID: 15964610 [TBL] [Abstract][Full Text] [Related]
11. Aquatic life water quality criteria derived via the UC Davis method: I. Organophosphate insecticides. Palumbo AJ; Tenbrook PL; Fojut TL; Faria IR; Tjeerdema RS Rev Environ Contam Toxicol; 2012; 216():1-49. PubMed ID: 22298112 [TBL] [Abstract][Full Text] [Related]
12. Including the spatial variability of metal speciation in the effect factor in life cycle impact assessment: Limits of the equilibrium partitioning method. Tromson C; Bulle C; Deschênes L Sci Total Environ; 2017 Mar; 581-582():117-125. PubMed ID: 27988190 [TBL] [Abstract][Full Text] [Related]
13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
14. Effects assessment: boron compounds in the aquatic environment. Schoderboeck L; Mühlegger S; Losert A; Gausterer C; Hornek R Chemosphere; 2011 Jan; 82(3):483-7. PubMed ID: 21055789 [TBL] [Abstract][Full Text] [Related]
15. Using Monte Carlo analysis to characterize the uncertainty in final acute values derived from aquatic toxicity data. McLaughlin DB; Jain V Integr Environ Assess Manag; 2011 Apr; 7(2):269-79. PubMed ID: 20836056 [TBL] [Abstract][Full Text] [Related]
16. Environmental risk limits for antifouling substances. van Wezel AP; van Vlaardingen P Aquat Toxicol; 2004 Mar; 66(4):427-44. PubMed ID: 15168950 [TBL] [Abstract][Full Text] [Related]
17. Effects of seven organic pollutants on soil nematode Caenorhabditis elegans. Sochová I; Hofman J; Holoubek I Environ Int; 2007 Aug; 33(6):798-804. PubMed ID: 17449100 [TBL] [Abstract][Full Text] [Related]
18. The impact of an additional ecotoxicity test on ecological quality standards. Henning-de Jong I; Ragas AM; Hendriks HW; Huijbregts MA; Posthuma L; Wintersen A; Jan Hendriks A Ecotoxicol Environ Saf; 2009 Nov; 72(8):2037-45. PubMed ID: 19748120 [TBL] [Abstract][Full Text] [Related]
19. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Baun A; Sørensen SN; Rasmussen RF; Hartmann NB; Koch CB Aquat Toxicol; 2008 Feb; 86(3):379-87. PubMed ID: 18190976 [TBL] [Abstract][Full Text] [Related]
20. Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species. Raimondo S; Jackson CR; Barron MG Environ Sci Technol; 2010 Oct; 44(19):7711-6. PubMed ID: 20795664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]