These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 12821242)
1. The failing human heart: another battlefield for the NAD(P)H oxidase? Warnholtz A; Munzel T J Am Coll Cardiol; 2003 Jun; 41(12):2172-4. PubMed ID: 12821242 [No Abstract] [Full Text] [Related]
2. Increased myocardial NADPH oxidase activity in human heart failure. Heymes C; Bendall JK; Ratajczak P; Cave AC; Samuel JL; Hasenfuss G; Shah AM J Am Coll Cardiol; 2003 Jun; 41(12):2164-71. PubMed ID: 12821241 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065 [TBL] [Abstract][Full Text] [Related]
4. NAD(P)H oxidase in the failing human heart. Krijnen PA; Meischl C; Visser CA; Hack CE; Niessen HW; Roos D J Am Coll Cardiol; 2003 Dec; 42(12):2170-1; author reply 2171-2. PubMed ID: 14680749 [No Abstract] [Full Text] [Related]
5. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Qin F; Simeone M; Patel R Free Radic Biol Med; 2007 Jul; 43(2):271-81. PubMed ID: 17603936 [TBL] [Abstract][Full Text] [Related]
6. Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Patel VB; Wang Z; Fan D; Zhabyeyev P; Basu R; Das SK; Wang W; Desaulniers J; Holland SM; Kassiri Z; Oudit GY Circ Res; 2013 Jun; 112(12):1542-56. PubMed ID: 23553616 [TBL] [Abstract][Full Text] [Related]
7. Inducible NO synthase is constitutively expressed in porcine myocardium and its level decreases along with tachycardia-induced heart failure. Paslawska U; Kiczak L; Bania J; Paslawski R; Janiszewski A; Dzięgiel P; Zacharski M; Tomaszek A; Michlik K Cardiovasc Pathol; 2016; 25(1):3-11. PubMed ID: 26361649 [TBL] [Abstract][Full Text] [Related]
9. NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Octavia Y; Brunner-La Rocca HP; Moens AL Free Radic Biol Med; 2012 Jan; 52(2):291-7. PubMed ID: 22080085 [TBL] [Abstract][Full Text] [Related]
10. NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle. Nediani C; Borchi E; Giordano C; Baruzzo S; Ponziani V; Sebastiani M; Nassi P; Mugelli A; d'Amati G; Cerbai E J Mol Cell Cardiol; 2007 Apr; 42(4):826-34. PubMed ID: 17346742 [TBL] [Abstract][Full Text] [Related]
11. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. van Heerebeek L; Hamdani N; Falcão-Pires I; Leite-Moreira AF; Begieneman MP; Bronzwaer JG; van der Velden J; Stienen GJ; Laarman GJ; Somsen A; Verheugt FW; Niessen HW; Paulus WJ Circulation; 2012 Aug; 126(7):830-9. PubMed ID: 22806632 [TBL] [Abstract][Full Text] [Related]
12. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Maack C; Kartes T; Kilter H; Schäfers HJ; Nickenig G; Böhm M; Laufs U Circulation; 2003 Sep; 108(13):1567-74. PubMed ID: 12963641 [TBL] [Abstract][Full Text] [Related]
13. Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts. Di Lisa F; Itoh N Cardiovasc Res; 2015 Apr; 106(1):1-3. PubMed ID: 25712960 [No Abstract] [Full Text] [Related]
15. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Tsutsui H; Kinugawa S; Matsushima S Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Baker MA; Aitken RJ Reprod Biol Endocrinol; 2005 Nov; 3():67. PubMed ID: 16313680 [TBL] [Abstract][Full Text] [Related]
17. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Sheeran FL; Pepe S Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E449-60. PubMed ID: 27406740 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Sossalla S; Fluschnik N; Schotola H; Ort KR; Neef S; Schulte T; Wittköpper K; Renner A; Schmitto JD; Gummert J; El-Armouche A; Hasenfuss G; Maier LS Circ Res; 2010 Oct; 107(9):1150-61. PubMed ID: 20814023 [TBL] [Abstract][Full Text] [Related]
19. Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Dieterich S; Bieligk U; Beulich K; Hasenfuss G; Prestle J Circulation; 2000 Jan 4-11; 101(1):33-9. PubMed ID: 10618301 [TBL] [Abstract][Full Text] [Related]
20. IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice. Ku HJ; Ahn Y; Lee JH; Park KM; Park JW Free Radic Biol Med; 2015 Mar; 80():84-92. PubMed ID: 25557279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]