These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 12821335)
1. A new approach for the detection of cervical cancer in Thai women. Sindhuphak R; Issaravanich S; Udomprasertgul V; Srisookho P; Warakamin S; Sindhuphak S; Boonbundarlchai R; Dusitsin N Gynecol Oncol; 2003 Jul; 90(1):10-4. PubMed ID: 12821335 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening. Fung Kee Fung M; Senterman M; Eid P; Faught W; Mikhael NZ; Wong PT Gynecol Oncol; 1997 Jul; 66(1):10-5. PubMed ID: 9234913 [TBL] [Abstract][Full Text] [Related]
3. Comparative study between Pap smear cytology and FTIR spectroscopy: a new tool for screening for cervical cancer. El-Tawil SG; Adnan R; Muhamed ZN; Othman NH Pathology; 2008 Oct; 40(6):600-3. PubMed ID: 18752127 [TBL] [Abstract][Full Text] [Related]
4. Classification of cervical cancer cells using FTIR data. Njoroge E; Alty SR; Gani MR; Alkatib M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5338-41. PubMed ID: 17945893 [TBL] [Abstract][Full Text] [Related]
5. Detecting structural changes at the molecular level with Fourier transform infrared spectroscopy. A potential tool for prescreening preinvasive lesions of the cervix. Yazdi HM; Bertrand MA; Wong PT Acta Cytol; 1996; 40(4):664-8. PubMed ID: 8693883 [TBL] [Abstract][Full Text] [Related]
6. [Fourier transform infrared spectroscopy study on normal and malignant tissues of cervix]. Li WX; Zheng QQ; Wang P; Li YQ; Chen GH Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1833-7. PubMed ID: 17205732 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the influence of high-risk human papillomavirus on the biochemical composition of cervical cancer cells using vibrational spectroscopy. Ostrowska KM; Malkin A; Meade A; O'Leary J; Martin C; Spillane C; Byrne HJ; Lyng FM Analyst; 2010 Dec; 135(12):3087-93. PubMed ID: 20967345 [TBL] [Abstract][Full Text] [Related]
8. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy. Romeo MJ; Wood BR; Quinn MA; McNaughton D Biopolymers; 2003; 72(1):69-76. PubMed ID: 12400093 [TBL] [Abstract][Full Text] [Related]
9. Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia. Mark S; Sahu RK; Kantarovich K; Podshyvalov A; Guterman H; Goldstein J; Jagannathan R; Argov S; Mordechai S J Biomed Opt; 2004; 9(3):558-67. PubMed ID: 15189094 [TBL] [Abstract][Full Text] [Related]
10. The analysis of exfoliated cervical cells by infrared microscopy. Lowry SR Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):169-77. PubMed ID: 9551648 [TBL] [Abstract][Full Text] [Related]
11. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells. Wong PT; Senterman MK; Jackli P; Wong RK; Salib S; Campbell CE; Feigel R; Faught W; Fung Kee Fung M Biopolymers; 2002; 67(6):376-86. PubMed ID: 12209445 [TBL] [Abstract][Full Text] [Related]
13. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Wood BR; Quinn MA; Tait B; Ashdown M; Hislop T; Romeo M; McNaughton D Biospectroscopy; 1998; 4(2):75-91. PubMed ID: 9557903 [TBL] [Abstract][Full Text] [Related]
14. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening. Rymsza T; Ribeiro EA; de Carvalho LFDCES; Bhattacharjee T; de Azevedo Canevari R Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():238-246. PubMed ID: 29454252 [TBL] [Abstract][Full Text] [Related]
15. IR microspectroscopy: potential applications in cervical cancer screening. Walsh MJ; German MJ; Singh M; Pollock HM; Hammiche A; Kyrgiou M; Stringfellow HF; Paraskevaidis E; Martin-Hirsch PL; Martin FL Cancer Lett; 2007 Feb; 246(1-2):1-11. PubMed ID: 16713674 [TBL] [Abstract][Full Text] [Related]
16. An overview on applications of optical spectroscopy in cervical cancers. Murali Krishna C; Sockalingum GD; Vidyasagar MS; Manfait M; Fernanades DJ; Vadhiraja BM; Maheedhar K J Cancer Res Ther; 2008; 4(1):26-36. PubMed ID: 18417899 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Wood BR; Chiriboga L; Yee H; Quinn MA; McNaughton D; Diem M Gynecol Oncol; 2004 Apr; 93(1):59-68. PubMed ID: 15047215 [TBL] [Abstract][Full Text] [Related]
18. Comparison of HPV test versus conventional and automation-assisted Pap screening as potential screening tools for preventing cervical cancer. Nieminen P; Vuorma S; Viikki M; Hakama M; Anttila A BJOG; 2004 Aug; 111(8):842-8. PubMed ID: 15270934 [TBL] [Abstract][Full Text] [Related]
19. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Purandare NC; Patel II; Trevisan J; Bolger N; Kelehan R; von Bünau G; Martin-Hirsch PL; Prendiville WJ; Martin FL Analyst; 2013 Jul; 138(14):3909-16. PubMed ID: 23338619 [TBL] [Abstract][Full Text] [Related]
20. Randomized controlled trial of human papillomavirus testing versus Pap cytology in the primary screening for cervical cancer precursors: design, methods and preliminary accrual results of the Canadian cervical cancer screening trial (CCCaST). Mayrand MH; Duarte-Franco E; Coutlée F; Rodrigues I; Walter SD; Ratnam S; Franco EL; Int J Cancer; 2006 Aug; 119(3):615-23. PubMed ID: 16572425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]