BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 1282156)

  • 1. Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells.
    Uceda G; Artalejo AR; López MG; Abad F; Neher E; García AG
    J Physiol; 1992 Aug; 454():213-30. PubMed ID: 1282156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent inactivation of catecholamine secretion evoked by brief calcium pulses in the cat adrenal medulla.
    Garrido B; López MG; Moro MA; de Pascual R; García AG
    J Physiol; 1990 Sep; 428():615-37. PubMed ID: 1700112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The source of calcium for muscarinic-mediated catecholamine release from cat adrenals.
    Abad F; Garrido B; López MG; García AG
    J Physiol; 1992 Jan; 445():725-40. PubMed ID: 1501152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (+)-isradipine but not (-)-Bay-K-8644 exhibits voltage-dependent effects on cat adrenal catecholamine release.
    López MG; Michelena P; Gandía L; García AG
    Br J Pharmacol; 1991 Feb; 102(2):289-96. PubMed ID: 1707711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dihydropyridine-resistant component in the rat adrenal secretory response to splanchnic nerve stimulation.
    López MG; Shukla R; García AG; Wakade AR
    J Neurochem; 1992 Jun; 58(6):2139-44. PubMed ID: 1374118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal Ca2+ mobilization by muscarinic stimulation increases secretion from adrenal chromaffin cells only in the presence of Ca2+ influx.
    Yamagami K; Nishimura S; Sorimachi M
    J Neurochem; 1991 Nov; 57(5):1681-9. PubMed ID: 1717654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of blockade by (+)isradipine of adrenal catecholamine release.
    Cárdenas AM; Montiel C; García AG; Michelena P; Sánchez-García P
    Eur J Pharmacol; 1991 Jan; 192(2):243-51. PubMed ID: 1851704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different sensitivities to dihydropyridines of catecholamine release from cat and ox adrenals.
    Gandía L; Michelena P; de Pascual R; López MG; García AG
    Neuroreport; 1990 Oct; 1(2):119-22. PubMed ID: 1717038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of blockade by flunarizine of bovine adrenal catecholamine release.
    De la Fuente MT; Guantes JM; Del Valle M; Garcia AG
    Eur J Pharmacol; 1992 Dec; 229(2-3):189-96. PubMed ID: 1490523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of potassium-evoked adrenomedullary catecholamine release in the presence of calcium, strontium or BAY-K-8644.
    Sala F; Fonteriz RI; Borges R; García AG
    FEBS Lett; 1986 Feb; 196(1):34-8. PubMed ID: 2417887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraethylammonium stimulates adrenomedullary secretion by causing fluctuations in a cytosolic free Ca concentration.
    Sorimachi M; Yamagami K; Nishimura S
    Brain Res; 1990 Jan; 507(2):347-50. PubMed ID: 1692502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: mechanism may be by direct activation of L-type and G-type calcium channels.
    Ceña V; Brocklehurst KW; Pollard HB; Rojas E
    J Membr Biol; 1991 May; 122(1):23-31. PubMed ID: 1714959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium dependency of muscarinic and nicotinic agonist-induced ATP and catecholamine secretion from porcine adrenal chromaffin cells.
    Xu YP; Duarte EP; Forsberg EJ
    J Neurochem; 1991 Jun; 56(6):1889-96. PubMed ID: 1851204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional aspects of calcium channels of splanchnic neurons and chromaffin cells of the rat adrenal medulla.
    Shukla R; Wakade AR
    J Neurochem; 1991 Mar; 56(3):753-8. PubMed ID: 1847182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichosporin-B-III, an alpha-aminoisobutyric acid-containing peptide, causes Ca(2+)-dependent catecholamine secretion from adrenal medullary chromaffin cells.
    Tachikawa E; Takahashi S; Furumachi K; Kashimoto T; Iida A; Nagaoka Y; Fujita T; Takaishi Y
    Mol Pharmacol; 1991 Nov; 40(5):790-7. PubMed ID: 1658610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Ca2+ entry and inositol trisphosphate-induced internal Ca2+ mobilization in muscarinic receptor-mediated catecholamine release in dog adrenal chromaffin cells.
    Ohtsuki H; Morita K; Minami N; Suemitsu T; Tsujimoto A; Dohi T
    Neurochem Int; 1992 Sep; 21(2):259-67. PubMed ID: 1363867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation by voltage of calcium channels and adrenal catecholamine release.
    Garrido B; Abad F; García AG
    Ann N Y Acad Sci; 1991; 635():459-63. PubMed ID: 1720605
    [No Abstract]   [Full Text] [Related]  

  • 18. Membrane-mediated effects of the steroid 17-alpha-estradiol on adrenal catecholamine release.
    López MG; Abad F; Sancho C; de Pascual R; Borges R; Maroto R; Dixon W; Garcia AG
    J Pharmacol Exp Ther; 1991 Oct; 259(1):279-85. PubMed ID: 1920120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin-evoked catecholamine release from cat adrenal glands.
    Artalejo AR; Montiel C; Sánchez-García P; Uceda G; Guantes JM; García AG
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1204-10. PubMed ID: 2363722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hypoxia on the catecholamine release, Ca2+ uptake, and cytosolic free Ca2+ concentration in cultured bovine adrenal chromaffin cells.
    Lee K; Miwa S; Koshimura K; Hasegawa H; Hamahata K; Fujiwara M
    J Neurochem; 1990 Oct; 55(4):1131-7. PubMed ID: 2398351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.