These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489 [TBL] [Abstract][Full Text] [Related]
4. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Inoue T; Higuchi M; Hashimoto Y; Seki M; Kobayashi M; Kato T; Tabata S; Shinozaki K; Kakimoto T Nature; 2001 Feb; 409(6823):1060-3. PubMed ID: 11234017 [TBL] [Abstract][Full Text] [Related]
5. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399 [TBL] [Abstract][Full Text] [Related]
6. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress. Parmar JH; Bhartiya S; Venkatesh KV Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148 [TBL] [Abstract][Full Text] [Related]
7. Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway. Yamamoto K; Tatebayashi K; Saito H Mol Cell Biol; 2016 Feb; 36(3):475-87. PubMed ID: 26598606 [TBL] [Abstract][Full Text] [Related]
8. Cell integrity signaling activation in response to hyperosmotic shock in yeast. García-Rodríguez LJ; Valle R; Durán A; Roncero C FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316 [TBL] [Abstract][Full Text] [Related]
9. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
10. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Román E; Nombela C; Pla J Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872 [TBL] [Abstract][Full Text] [Related]
11. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Tanigawa M; Kihara A; Terashima M; Takahara T; Maeda T Mol Cell Biol; 2012 Jul; 32(14):2861-70. PubMed ID: 22586268 [TBL] [Abstract][Full Text] [Related]
12. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. Takayama T; Yamamoto K; Saito H; Tatebayashi K PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143 [TBL] [Abstract][Full Text] [Related]
13. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Urao T; Yakubov B; Satoh R; Yamaguchi-Shinozaki K; Seki M; Hirayama T; Shinozaki K Plant Cell; 1999 Sep; 11(9):1743-54. PubMed ID: 10488240 [TBL] [Abstract][Full Text] [Related]
14. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. O'Rourke SM; Herskowitz I Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881 [TBL] [Abstract][Full Text] [Related]
15. Phosphorelay signaling in yeast in response to changes in osmolarity. Santos JL; Shiozaki K Sci STKE; 2004 Dec; 2004(262):tr12. PubMed ID: 15585692 [TBL] [Abstract][Full Text] [Related]
16. Interaction Dynamics Determine Signaling and Output Pathway Responses. Stojanovski K; Ferrar T; Benisty H; Uschner F; Delgado J; Jimenez J; Solé C; de Nadal E; Klipp E; Posas F; Serrano L; Kiel C Cell Rep; 2017 Apr; 19(1):136-149. PubMed ID: 28380353 [TBL] [Abstract][Full Text] [Related]
17. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Winkler A; Arkind C; Mattison CP; Burkholder A; Knoche K; Ota I Eukaryot Cell; 2002 Apr; 1(2):163-73. PubMed ID: 12455951 [TBL] [Abstract][Full Text] [Related]
18. The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Miyamoto M; Furuichi Y; Komiyama T Yeast; 2012 Nov; 29(11):475-85. PubMed ID: 23065846 [TBL] [Abstract][Full Text] [Related]
19. Yeast osmoregulation. Hohmann S; Krantz M; Nordlander B Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410 [TBL] [Abstract][Full Text] [Related]
20. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Kaserer AO; Andi B; Cook PF; West AH Biochemistry; 2009 Aug; 48(33):8044-50. PubMed ID: 19618914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]