These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12822799)

  • 21. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of transient asphyxia on receptor potentials in inner hair cells of the guinea pig cochlea.
    Russell IJ; Cowley EM
    Hear Res; 1983 Sep; 11(3):373-84. PubMed ID: 6630089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptation in a revised inner-hair cell model.
    Sumner CJ; Lopez-Poveda EA; O'Mard LP; Meddis R
    J Acoust Soc Am; 2003 Feb; 113(2):893-901. PubMed ID: 12597183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve.
    Evans EF
    J Physiol; 1972 Oct; 226(1):263-87. PubMed ID: 5083170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2017 Jun; 141(6):4438. PubMed ID: 28679269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle.
    Winslow RL; Sachs MB
    Hear Res; 1988 Sep; 35(2-3):165-89. PubMed ID: 3198509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers.
    Jenison RL; Greenberg S; Kluender KR; Rhode WS
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):773-86. PubMed ID: 1939884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique.
    Sellick PM; Patuzzi R; Johnstone BM
    J Acoust Soc Am; 1982 Jul; 72(1):131-41. PubMed ID: 7108035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of a high-frequency suppressor on tuning curves and derived basilar-membrane response functions.
    Yasin I; Plack CJ
    J Acoust Soc Am; 2003 Jul; 114(1):322-32. PubMed ID: 12880044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One source for distortion product otoacoustic emissions generated by low- and high-level primaries.
    Lukashkin AN; Lukashkina VA; Russell IJ
    J Acoust Soc Am; 2002 Jun; 111(6):2740-8. PubMed ID: 12083209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An alternate approach to constructing distortion product otoacoustic emission (DPOAE) suppression tuning curves.
    Johnson TA; Neely ST; Dierking DM; Hoover BM; Gorga MP
    J Acoust Soc Am; 2004 Dec; 116(6):3263-6. PubMed ID: 15658675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Ruggero MA
    Hear Res; 2011 Feb; 272(1-2):178-86. PubMed ID: 20951191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency.
    Palmer AR; Shackleton TM
    J Assoc Res Otolaryngol; 2009 Jun; 10(2):233-50. PubMed ID: 19093151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling signal propagation in the human cochlea.
    Neely ST; Rasetshwane DM
    J Acoust Soc Am; 2017 Oct; 142(4):2155. PubMed ID: 29092611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; Dubrovskiĭ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of spectro-temporal receptive fields, reverse correlation functions, and frequency tuning curves of auditory-nerve fibers.
    Kim PJ; Young ED
    J Acoust Soc Am; 1994 Jan; 95(1):410-22. PubMed ID: 8120252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the information in auditory-nerve responses for level discrimination.
    Colburn HS; Carney LH; Heinz MG
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):294-311. PubMed ID: 14690049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/.
    Winter IM; Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1437-41. PubMed ID: 2172345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers.
    Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1412-26. PubMed ID: 2229676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.