These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12822801)

  • 1. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1 ,f2) area study.
    Schneider S; Prijs VF; Schoonhoven R
    J Acoust Soc Am; 2003 Jun; 113(6):3285-96. PubMed ID: 12822801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group delays of distortion product otoacoustic emissions in the guinea pig.
    Schneider S; Prijs VF; Schoonhoven R
    J Acoust Soc Am; 1999 May; 105(5):2722-30. PubMed ID: 10335624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave and place fixed DPOAE maps of the human ear.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2001 Apr; 109(4):1513-25. PubMed ID: 11325123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group delays of distortion product otoacoustic emissions: relating delays measured with f1- and f2-sweep paradigms.
    Prijs VF; Schneider S; Schoonhoven R
    J Acoust Soc Am; 2000 Jun; 107(6):3298-307. PubMed ID: 10875375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1640-62. PubMed ID: 8817892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears.
    Zelle D; Lorenz L; Thiericke JP; Gummer AW; Dalhoff E
    J Acoust Soc Am; 2017 May; 141(5):3203. PubMed ID: 28599560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3473-83. PubMed ID: 10615687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In search of basal distortion product generators.
    Withnell RH; Lodde J
    J Acoust Soc Am; 2006 Oct; 120(4):2116-23. PubMed ID: 17069309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of DPOAEs in the guinea pig.
    Withnell RH; Shaffer LA; Talmadge CL
    Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple internal reflections in the cochlea and their effect on DPOAE fine structure.
    Dhar S; Talmadge CL; Long GR; Tubis A
    J Acoust Soc Am; 2002 Dec; 112(6):2882-97. PubMed ID: 12509010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of a single saturating non-linearity account for post-onset changes in 2f1-f2 distortion product otoacoustic emission.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2002 Oct; 112(4):1561-8. PubMed ID: 12398462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2001 Dec; 110(6):3097-106. PubMed ID: 11785811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelations among distortion-product phase-gradient delays: their connection to scaling symmetry and its breaking.
    Shera CA; Talmadge CL; Tubis A
    J Acoust Soc Am; 2000 Dec; 108(6):2933-48. PubMed ID: 11144585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude of distortion product otoacoustic emissions in the guinea pig in f(1)- and f(2)-sweep paradigms.
    Schneider S; Schoonhoven R; Prijs VF
    Hear Res; 2001 May; 155(1-2):21-31. PubMed ID: 11335073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.