BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 12822936)

  • 1. Gas chromatographic investigation of acrylamide formation in browning model systems.
    Yasuhara A; Tanaka Y; Hengel M; Shibamoto T
    J Agric Food Chem; 2003 Jul; 51(14):3999-4003. PubMed ID: 12822936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts.
    Ehling S; Shibamoto T
    J Agric Food Chem; 2005 Jun; 53(12):4813-9. PubMed ID: 15941321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of oil degradation components in the formation of acrylamide in fried foodstuffs.
    Mestdagh F; Castelein P; Van Peteghem C; De Meulenaer B
    J Agric Food Chem; 2008 Aug; 56(15):6141-4. PubMed ID: 18624436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylamide and pyrazine formation in model systems containing asparagine.
    Koutsidis G; De la Fuente A; Dimitriou C; Kakoulli A; Wedzicha BL; Mottram DS
    J Agric Food Chem; 2008 Aug; 56(15):6105-12. PubMed ID: 18624441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of acrylamide formed in asparagine/D-glucose maillard model systems by using gas chromatography with headspace solid-phase microextraction.
    El-Ghorab AH; Fujioka K; Shibamoto T
    J AOAC Int; 2006; 89(1):149-53. PubMed ID: 16512240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system.
    Knol JJ; van Loon WA; Linssen JP; Ruck AL; van Boekel MA; Voragen AG
    J Agric Food Chem; 2005 Jul; 53(15):6133-9. PubMed ID: 16029007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the influence of different moisture levels on acrylamide formation/elimination reactions using multiresponse analysis.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2008 Aug; 56(15):6460-70. PubMed ID: 18597471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of lipid oxidation products to acrylamide formation in model systems.
    Zamora R; Hidalgo FJ
    J Agric Food Chem; 2008 Aug; 56(15):6075-80. PubMed ID: 18624449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide from Maillard reaction products.
    Stadler RH; Blank I; Varga N; Robert F; Hau J; Guy PA; Robert MC; Riediker S
    Nature; 2002 Oct; 419(6906):449-50. PubMed ID: 12368845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of acrylamide from lipids.
    Ehling S; Hengel M; Shibamoto T
    Adv Exp Med Biol; 2005; 561():223-33. PubMed ID: 16438301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2010 Nov; 58(22):11740-8. PubMed ID: 20973553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pyridoxamine on acrylamide formation in a glucose/asparagine model system.
    Arribas-Lorenzo G; Morales FJ
    J Agric Food Chem; 2009 Feb; 57(3):901-9. PubMed ID: 19143489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.
    Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I
    J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide formation mechanism in heated foods.
    Zyzak DV; Sanders RA; Stojanovic M; Tallmadge DH; Eberhart BL; Ewald DK; Gruber DC; Morsch TR; Strothers MA; Rizzi GP; Villagran MD
    J Agric Food Chem; 2003 Jul; 51(16):4782-7. PubMed ID: 14705913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide is formed in the Maillard reaction.
    Mottram DS; Wedzicha BL; Dodson AT
    Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide.
    Granvogl M; Schieberle P
    J Agric Food Chem; 2006 Aug; 54(16):5933-8. PubMed ID: 16881697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems.
    Koutsidis G; Simons SP; Thong YH; Haldoupis Y; Mojica-Lazaro J; Wedzicha BL; Mottram DS
    J Agric Food Chem; 2009 Oct; 57(19):9011-5. PubMed ID: 19739658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system.
    Claeys WL; De Vleeschouwer K; Hendrickx ME
    J Agric Food Chem; 2005 Dec; 53(26):9999-10005. PubMed ID: 16366686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems.
    Amrein TM; Andres L; Manzardo GG; Amado R
    J Agric Food Chem; 2006 Dec; 54(26):10253-61. PubMed ID: 17177568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of pH on the kinetics of acrylamide formation/elimination reactions in model systems.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2006 Oct; 54(20):7847-55. PubMed ID: 17002461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.