These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12822957)
1. Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. Bradshaw MP; Cheynier V; Scollary GR; Prenzler PD J Agric Food Chem; 2003 Jul; 51(14):4126-32. PubMed ID: 12822957 [TBL] [Abstract][Full Text] [Related]
2. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin. Clark AC; Vestner J; Barril C; Maury C; Prenzler PD; Scollary GR J Agric Food Chem; 2010 Jan; 58(2):1004-11. PubMed ID: 20039675 [TBL] [Abstract][Full Text] [Related]
3. Formation of pigment precursor (+)-1''-methylene-6''-hydroxy-2H-furan-5''-one-catechin isomers from (+)-catechin and a degradation product of ascorbic acid in a model wine system. Barril C; Clark AC; Prenzler PD; Karuso P; Scollary GR J Agric Food Chem; 2009 Oct; 57(20):9539-46. PubMed ID: 20560623 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine. Sonni F; Clark AC; Prenzler PD; Riponi C; Scollary GR J Agric Food Chem; 2011 Apr; 59(8):3940-9. PubMed ID: 21384873 [TBL] [Abstract][Full Text] [Related]
5. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Barril C; Clark AC; Scollary GR Anal Chim Acta; 2012 Jun; 732():186-93. PubMed ID: 22688051 [TBL] [Abstract][Full Text] [Related]
6. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin. Labrouche F; Clark AC; Prenzler PD; Scollary GR J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685 [TBL] [Abstract][Full Text] [Related]
7. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
8. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study. Poljsak B; Raspor P J Appl Toxicol; 2008 Mar; 28(2):183-8. PubMed ID: 17582581 [TBL] [Abstract][Full Text] [Related]
9. Ascorbic acid-induced browning of (+)-catechin in a model wine system. Bradshaw MP; Prenzler PD; Scollary GR J Agric Food Chem; 2001 Feb; 49(2):934-9. PubMed ID: 11262052 [TBL] [Abstract][Full Text] [Related]
10. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947 [TBL] [Abstract][Full Text] [Related]
11. Oxidative behavior of (+)-catechin in the presence of inactive dry yeasts: a comparison with sulfur dioxide, ascorbic acid and glutathione. Comuzzo P; Toniolo R; Battistutta F; Lizee M; Svigelj R; Zironi R J Sci Food Agric; 2017 Dec; 97(15):5158-5167. PubMed ID: 28436036 [TBL] [Abstract][Full Text] [Related]
12. Understanding the contribution of ascorbic acid to the pigment development in model white wine systems using liquid chromatography with diode array and mass spectrometry detection techniques. Barril C; Clark AC; Scollary GR Anal Chim Acta; 2008 Jul; 621(1):44-51. PubMed ID: 18573369 [TBL] [Abstract][Full Text] [Related]
13. The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine. Clark AC; Prenzler PD; Scollary GR J Agric Food Chem; 2003 Oct; 51(21):6204-10. PubMed ID: 14518945 [TBL] [Abstract][Full Text] [Related]
14. Browning in ethanolic solutions of ascorbic acid and catechin. Chuang PT; Shen SC; Wu JS J Agric Food Chem; 2011 Jul; 59(14):7818-24. PubMed ID: 21668002 [TBL] [Abstract][Full Text] [Related]
15. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Curcio M; Puoci F; Iemma F; Parisi OI; Cirillo G; Spizzirri UG; Picci N J Agric Food Chem; 2009 Jul; 57(13):5933-8. PubMed ID: 19566085 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant and pro-oxidant effects of red wine and its fractions on Cu(II) induced LDL oxidation evaluated by absorbance and chemiluminescence measurements. Hötzer KA; Henriquez C; Pino E; Miranda-Rottmann S; Aspillaga A; Leighton F; Lissi E Free Radic Res; 2005 Feb; 39(2):175-83. PubMed ID: 15763965 [TBL] [Abstract][Full Text] [Related]
17. Interaction of yeasts with the products resulting from the condensation reaction between (+)-catechin and acetaldehyde. Lopez-Toledano A; Villaño-Valencia D; Mayen M; Merida J; Medina M J Agric Food Chem; 2004 Apr; 52(8):2376-81. PubMed ID: 15080649 [TBL] [Abstract][Full Text] [Related]
18. Factors influencing the antioxidant and pro-oxidant activity of polyphenols in oil-in-water emulsions. Zhou L; Elias RJ J Agric Food Chem; 2012 Mar; 60(11):2906-15. PubMed ID: 22356204 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant and pro-oxidant activity of (-)-epigallocatechin-3-gallate in food emulsions: Influence of pH and phenolic concentration. Zhou L; Elias RJ Food Chem; 2013 Jun; 138(2-3):1503-9. PubMed ID: 23411273 [TBL] [Abstract][Full Text] [Related]
20. The decay of ascorbic acid in a model wine system at low oxygen concentration. Wallington N; Clark AC; Prenzler PD; Barril C; Scollary GR Food Chem; 2013 Dec; 141(3):3139-46. PubMed ID: 23871070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]