These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 12823)
1. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase. Szajn H; Csopak H Biochim Biophys Acta; 1977 Jan; 480(1):143-53. PubMed ID: 12823 [TBL] [Abstract][Full Text] [Related]
2. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
3. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation. Cathala G; Brunel C J Biol Chem; 1975 Aug; 250(15):6046-53. PubMed ID: 238994 [TBL] [Abstract][Full Text] [Related]
4. Conformational changes in Mycobacterium smegmatis glutamine synthetase induced by certain divalent cations. Matsuoka K; Kimura K J Biochem; 1985 Apr; 97(4):1033-42. PubMed ID: 2863260 [TBL] [Abstract][Full Text] [Related]
5. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. Zukin RS; Hollis DP J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241 [TBL] [Abstract][Full Text] [Related]
6. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography. Bock JL; Kowalsky A Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775 [TBL] [Abstract][Full Text] [Related]
7. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
8. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714 [TBL] [Abstract][Full Text] [Related]
10. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. Coleman JE; Nakamura K; Chlebowski JF J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751 [TBL] [Abstract][Full Text] [Related]
11. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669 [TBL] [Abstract][Full Text] [Related]
12. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. Rulísek L; Vondrásek J J Inorg Biochem; 1998 Sep; 71(3-4):115-27. PubMed ID: 9833317 [TBL] [Abstract][Full Text] [Related]
14. Ca2+ and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline-quinone-containing) glucose dehydrogenase. Olsthoorn AJ; Otsuki T; Duine JA Eur J Biochem; 1997 Jul; 247(2):659-65. PubMed ID: 9266710 [TBL] [Abstract][Full Text] [Related]
15. Replacement of metal in metalloenzymes. A lead-alkaline phosphatase. Sabbioni E; Girardi F; Marafante E Biochemistry; 1976 Jan; 15(2):271-6. PubMed ID: 813761 [TBL] [Abstract][Full Text] [Related]
16. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Hernandez Valladares M; Felici A; Weber G; Adolph HW; Zeppezauer M; Rossolini GM; Amicosante G; Frère JM; Galleni M Biochemistry; 1997 Sep; 36(38):11534-41. PubMed ID: 9298974 [TBL] [Abstract][Full Text] [Related]
17. The role of divalent cations in structure and function of murine adenosine deaminase. Cooper BF; Sideraki V; Wilson DK; Dominguez DY; Clark SW; Quiocho FA; Rudolph FB Protein Sci; 1997 May; 6(5):1031-7. PubMed ID: 9144774 [TBL] [Abstract][Full Text] [Related]
18. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Doudeva LG; Huang H; Hsia KC; Shi Z; Li CL; Shen Y; Cheng YS; Yuan HS Protein Sci; 2006 Feb; 15(2):269-80. PubMed ID: 16434744 [TBL] [Abstract][Full Text] [Related]
19. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Duguid J; Bloomfield VA; Benevides J; Thomas GJ Biophys J; 1993 Nov; 65(5):1916-28. PubMed ID: 8298021 [TBL] [Abstract][Full Text] [Related]
20. Roles of metal ions in the maintenance of the tertiary and quaternary structure of arginase from Saccharomyces cerevisiae. Green SM; Ginsburg A; Lewis MS; Hensley P J Biol Chem; 1991 Nov; 266(32):21474-81. PubMed ID: 1939179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]