These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. CD studies on the conformation of oligonucleotides complexed with divalent metal ions: interaction of Zn2+ with guanine favours syn conformation. Zimmer C; Luck G; Holy A Nucleic Acids Res; 1976 Oct; 3(10):2757-70. PubMed ID: 11449 [TBL] [Abstract][Full Text] [Related]
43. Expression, purification, and characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Pyrococcus furiosus. Schofield LR; Patchett ML; Parker EJ Protein Expr Purif; 2004 Mar; 34(1):17-27. PubMed ID: 14766297 [TBL] [Abstract][Full Text] [Related]
44. Spectral studies of the interactions of Escherichia coli alkaline phosphatase with 4-(4-aminophenylazo)-phenylarsonic acid. Szajn H; Csopak H; Fölsch G Biochim Biophys Acta; 1977 Jan; 480(1):154-62. PubMed ID: 318870 [TBL] [Abstract][Full Text] [Related]
46. Metal ions binding onto lignocellulosic biosorbent. Krishnani KK; Meng X; Dupont L J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jun; 44(7):688-99. PubMed ID: 19412851 [TBL] [Abstract][Full Text] [Related]
47. Metal ion interactions in the control of haem oxygenase induction in liver and kidney. Drummond GS; Kappas A Biochem J; 1980 Nov; 192(2):637-48. PubMed ID: 6894538 [TBL] [Abstract][Full Text] [Related]
49. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Sykes BD; Weingarten HI; Schlesinger MJ Proc Natl Acad Sci U S A; 1974 Feb; 71(2):469-73. PubMed ID: 4592693 [TBL] [Abstract][Full Text] [Related]
50. Role of magnesium in Escherichia coli alkaline phosphatase. Anderson RA; Bosron WF; Kennedy FS; Vallee BL Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131 [TBL] [Abstract][Full Text] [Related]
51. NMR studies of metal ion binding to the Zn-finger-like HNH motif of colicin E9. Hannan JP; Whittaker SB; Hemmings AM; James R; Kleanthous C; Moore GR J Inorg Biochem; 2000 Apr; 79(1-4):365-70. PubMed ID: 10830890 [TBL] [Abstract][Full Text] [Related]
52. [A study of the molecular mechanism of DNA interaction with divalent metal ions]. Kas'ianenko NA; D'iakonova NE; Frisman EV Mol Biol (Mosk); 1989; 23(4):975-82. PubMed ID: 2586510 [TBL] [Abstract][Full Text] [Related]
53. Estrogen receptor interaction with immobilized metals: differential molecular recognition of Zn2+, Cu2+ and Ni2+ and separation of receptor isoforms. Hutchens TW; Li CM J Mol Recognit; 1988 Apr; 1(2):80-92. PubMed ID: 3273655 [TBL] [Abstract][Full Text] [Related]
55. Activation of alkaline phosphatase with Mg2+ and Zn2+ in rat hepatoma cells. Accumulation of apoenzyme. Sorimachi K J Biol Chem; 1987 Feb; 262(4):1535-41. PubMed ID: 3805040 [TBL] [Abstract][Full Text] [Related]
56. Further studies on the binding of divalent cations to the phosphoglycoprotein phosvitin. Grizzuti K; Perlmann GE Biochemistry; 1975 May; 14(10):2171-5. PubMed ID: 1148164 [TBL] [Abstract][Full Text] [Related]
57. Mg2+ binding to alkaline phosphatase correlates with slow changes in protein lability. Dirnbach E; Steel DG; Gafni A Biochemistry; 2001 Sep; 40(37):11219-26. PubMed ID: 11551221 [TBL] [Abstract][Full Text] [Related]
58. Mode of inactivation of putrescine oxidase by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide or metal ions. Okada M; Kawashima S; Imahori K J Biochem; 1980 Aug; 88(2):481-8. PubMed ID: 7419507 [TBL] [Abstract][Full Text] [Related]
59. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase. McCracken S; Meighen EA J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146 [TBL] [Abstract][Full Text] [Related]
60. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase. Anderson RA; Kennedy FS; Vallee BL Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]