These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12823816)

  • 21. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans.
    Fillinger S; Ruijter G; Tamás MJ; Visser J; Thevelein JM; d'Enfert C
    Mol Microbiol; 2001 Jan; 39(1):145-57. PubMed ID: 11123696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The gene cutA of Fusarium fujikuroi, encoding a protein of the haloacid dehalogenase family, is involved in osmotic stress and glycerol metabolism.
    García-Martínez J; Castrillo M; Avalos J
    Microbiology (Reading); 2014 Jan; 160(Pt 1):26-36. PubMed ID: 24129845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress.
    Hallsworth JE; Prior BA; Nomura Y; Iwahara M; Timmis KN
    Appl Environ Microbiol; 2003 Dec; 69(12):7032-4. PubMed ID: 14660346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans.
    Suzuki S; Sarikaya Bayram Ö; Bayram Ö; Braus GH
    Fungal Genet Biol; 2013 Jul; 56():42-53. PubMed ID: 23644150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans.
    Prathumpai W; McIntyre M; Nielsen J
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):748-53. PubMed ID: 12920487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The osmotic stress tolerance of basidiomycetous yeasts.
    Tekolo OM; McKenzie J; Botha A; Prior BA
    FEMS Yeast Res; 2010 Jun; 10(4):482-91. PubMed ID: 20214685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species.
    Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O
    Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa.
    d'Enfert C; Bonini BM; Zapella PD; Fontaine T; da Silva AM; Terenzi HF
    Mol Microbiol; 1999 May; 32(3):471-83. PubMed ID: 10320571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA-disrupted strain.
    Greenstein S; Shadkchan Y; Jadoun J; Sharon C; Markovich S; Osherov N
    Fungal Genet Biol; 2006 Jan; 43(1):42-53. PubMed ID: 16376592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cloning and expression of the osmotic tolerance gene Bbmpd of Beauveria bassiana].
    Luo Z; Jin K; Zhang Y; Wu Z; Pei Y
    Wei Sheng Wu Xue Bao; 2010 Jun; 50(6):724-8. PubMed ID: 20687335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose.
    Fekete E; Karaffa L; Sándor E; Bányai I; Seiboth B; Gyémánt G; Sepsi A; Szentirmai A; Kubicek CP
    Arch Microbiol; 2004 Jan; 181(1):35-44. PubMed ID: 14624333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycerol catabolism in Aspergillus nidulans.
    Hondmann DH; Busink R; Witteveen CF; Visser J
    J Gen Microbiol; 1991 Mar; 137(3):629-36. PubMed ID: 2033381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and functional characterization of glycerol dehydrogenase reveal the role in kojic acid synthesis in Aspergillus oryzae.
    Fan J; Zhang Z; Long C; He B; Hu Z; Jiang C; Zeng B
    World J Microbiol Biotechnol; 2020 Aug; 36(9):136. PubMed ID: 32783085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyol pools in Aspergillus niger.
    Witteveen CF; Visser J
    FEMS Microbiol Lett; 1995 Dec; 134(1):57-62. PubMed ID: 8593956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion of Aspergillus nidulans cpsA/rseA induces increased extracellular hydrolase production in solid-state culture partly through the high osmolarity glycerol pathway.
    Ogawa M; Wada H; Yoshimura T; Sato A; Fukuda R; Koyama Y; Horiuchi H
    J Biosci Bioeng; 2021 Jun; 131(6):589-598. PubMed ID: 33827772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli.
    Cheng H; Jiang N; Shen A; Feng Y
    FEMS Microbiol Lett; 2005 Nov; 252(1):35-42. PubMed ID: 16165327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose.
    d'Enfert C; Fontaine T
    Mol Microbiol; 1997 Apr; 24(1):203-16. PubMed ID: 9140977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans.
    Kayingo G; Wong B
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2987-2999. PubMed ID: 16151209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability.
    Hallsworth JE; Magan N
    Microbiology (Reading); 1995 May; 141 ( Pt 5)():1109-1115. PubMed ID: 7773406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of sugars on D-arabitol production and glucose metabolism in Saccharomyces rouxii.
    Moran JW; Witter LD
    J Bacteriol; 1979 Jun; 138(3):823-31. PubMed ID: 457595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.