These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12823966)

  • 1. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly.
    Lee I; Harshey RM
    J Mol Biol; 2003 Jul; 330(2):261-75. PubMed ID: 12823966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of the conserved CA dinucleotide at Mu termini.
    Lee I; Harshey RM
    J Mol Biol; 2001 Nov; 314(3):433-44. PubMed ID: 11846557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mutations in the Mu-host junction region on transpososome assembly.
    Coros CJ; Chaconas G
    J Mol Biol; 2001 Jul; 310(2):299-309. PubMed ID: 11428891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations.
    Surette MG; Harkness T; Chaconas G
    J Biol Chem; 1991 Feb; 266(5):3118-24. PubMed ID: 1847140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target site selection in transposition of phage Mu.
    Mizuuchi M; Mizuuchi K
    Cold Spring Harb Symp Quant Biol; 1993; 58():515-23. PubMed ID: 7956065
    [No Abstract]   [Full Text] [Related]  

  • 8. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils.
    Pathania S; Jayaram M; Harshey RM
    Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions.
    Choi W; Jang S; Harshey RM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phage Mu transpososome core: DNA requirements for assembly and function.
    Savilahti H; Rice PA; Mizuuchi K
    EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
    Pathania S; Jayaram M; Harshey RM
    EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon.
    Mizuuchi M; Rice PA; Wardle SJ; Haniford DB; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14622-7. PubMed ID: 17785414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site.
    Watson MA; Chaconas G
    Cell; 1996 May; 85(3):435-45. PubMed ID: 8616898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.
    Yamauchi M; Baker TA
    EMBO J; 1998 Sep; 17(18):5509-18. PubMed ID: 9736628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coloring the Mu transpososome.
    Darcy IK; Chang J; Druivenga N; McKinney C; Medikonduri RK; Mills S; Navarra-Madsen J; Ponnusamy A; Sweet J; Thompson T
    BMC Bioinformatics; 2006 Oct; 7():435. PubMed ID: 17022825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage.
    Namgoong SY; Jayaram M; Kim K; Harshey RM
    J Mol Biol; 1994 May; 238(4):514-27. PubMed ID: 8176742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of transposable phage Mu DNA insertions begins only when the E. coli replisome collides with the transpososome.
    Jang S; Harshey RM
    Mol Microbiol; 2015 Aug; 97(4):746-58. PubMed ID: 25983038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.