These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12823974)

  • 1. Isolation of BsoBI restriction endonuclease variants with altered substrate specificity.
    Zhu Z; Zhou J; Friedman AM; Xu SY
    J Mol Biol; 2003 Jul; 330(2):359-72. PubMed ID: 12823974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of BsoBI restriction endonuclease in E. coli, purification of the recombinant BsoBI, and identification of catalytic residues of BsoBI by random mutagenesis.
    Ruan H; Lunnen KD; Pelletier JJ; Xu S
    Gene; 1997 Mar; 188(1):35-9. PubMed ID: 9099856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random mutagenesis targeted to the active site of the EcoRV restriction endonuclease.
    Vipond IB; Halford SE
    Biochemistry; 1996 Feb; 35(6):1701-11. PubMed ID: 8639649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of variants of the restriction endonuclease EcoRV that depend in their cleavage activity on the flexibility of sequences flanking the recognition site.
    Wenz C; Hahn M; Pingoud A
    Biochemistry; 1998 Feb; 37(8):2234-42. PubMed ID: 9485369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis.
    van der Woerd MJ; Pelletier JJ; Xu S; Friedman AM
    Structure; 2001 Feb; 9(2):133-44. PubMed ID: 11250198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of the cleavage distance of Fok I restriction endonuclease by insertion mutagenesis.
    Li L; Chandrasegaran S
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2764-8. PubMed ID: 8464886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein engineering of the restriction endonuclease EcoRV: replacement of an amino acid residue in the DNA binding site leads to an altered selectivity towards unmodified and modified substrates.
    Wenz C; Selent U; Wende W; Jeltsch A; Wolfes H; Pingoud A
    Biochim Biophys Acta; 1994 Sep; 1219(1):73-80. PubMed ID: 8086480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of restriction endonuclease BstYI to achieve increased substrate specificity.
    Samuelson JC; Xu SY
    J Mol Biol; 2002 Jun; 319(3):673-83. PubMed ID: 12054862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site.
    Sam MD; Horton NC; Nissan TA; Perona JJ
    J Mol Biol; 2001 Mar; 306(4):851-61. PubMed ID: 11243793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese.
    Vipond IB; Moon BJ; Halford SE
    Biochemistry; 1996 Feb; 35(6):1712-21. PubMed ID: 8639650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MnlI--The member of H-N-H subtype of Type IIS restriction endonucleases.
    Kriukiene E; Lubiene J; Lagunavicius A; Lubys A
    Biochim Biophys Acta; 2005 Aug; 1751(2):194-204. PubMed ID: 16024301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design.
    Roth M; Jeltsch A
    Nucleic Acids Res; 2001 Aug; 29(15):3137-44. PubMed ID: 11470870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and sequence comparison of AvaI and BsoBI restriction-modification systems.
    Ruan H; Lunnen KD; Scott ME; Moran LS; Slatko BE; Pelletier JJ; Hess EJ; Benner J; Wilson GG; Xu SY
    Mol Gen Genet; 1996 Oct; 252(6):695-9. PubMed ID: 8917312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mutant of BamHI restriction endonuclease which requires N6-methyladenine for cleavage.
    Whitaker RD; Dorner LF; Schildkraut I
    J Mol Biol; 1999 Jan; 285(4):1525-36. PubMed ID: 9917394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities.
    Chan SH; Bao Y; Ciszak E; Laget S; Xu SY
    Nucleic Acids Res; 2007; 35(18):6238-48. PubMed ID: 17855396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of BsoBI endonuclease in the presence and absence of DNA.
    Štěpán J; Kabelka I; Koča J; Kulhánek P
    J Mol Model; 2017 Dec; 24(1):22. PubMed ID: 29264670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R; Grazulis S; Bozic D; Huber R; Siksnys V
    J Mol Biol; 1998 Jun; 279(2):473-81. PubMed ID: 9642051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering TaqII bifunctional endonuclease DNA recognition fidelity: the effect of a single amino acid substitution within the methyltransferase catalytic site.
    Zylicz-Stachula A; Zebrowska J; Czajkowska E; Wrese W; Sulecka E; Skowron PM
    Mol Biol Rep; 2016 Apr; 43(4):269-82. PubMed ID: 26886214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EcoRV-T94V: a mutant restriction endonuclease with an altered substrate specificity towards modified oligodeoxynucleotides.
    Lanio T; Selent U; Wenz C; Wende W; Schulz A; Adiraj M; Katti SB; Pingoud A
    Protein Eng; 1996 Nov; 9(11):1005-10. PubMed ID: 8961353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.