BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12824077)

  • 1. Theoretical effects of UTB urea transporters in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F731-47. PubMed ID: 12824077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.
    Layton AT
    Bull Math Biol; 2007 Apr; 69(3):887-929. PubMed ID: 17265123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Countercurrent exchange in the renal medulla.
    Pallone TL; Turner MR; Edwards A; Jamison RL
    Am J Physiol Regul Integr Comp Physiol; 2003 May; 284(5):R1153-75. PubMed ID: 12676741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcirculation.
    Edwards A; Pallone TL
    Am J Physiol; 1997 Apr; 272(4 Pt 2):F505-14. PubMed ID: 9140052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology of the renal medullary microcirculation.
    Pallone TL; Zhang Z; Rhinehart K
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F253-66. PubMed ID: 12529271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and propofol in red blood cells.
    Voigtlaender J; Heindl B; Becker BF
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Sep; 366(3):209-17. PubMed ID: 12172703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of microvascular water and solute exchanges in the renal medulla.
    Pallone TL; Morgenthaler TI; Deen WM
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F303-15. PubMed ID: 6465323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta.
    Pallone TL; Edwards A; Ma T; Silldorff EP; Verkman AS
    J Clin Invest; 2000 Jan; 105(2):215-22. PubMed ID: 10642600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of glucose transport and conversion to lactate in the renal medullary microcirculation.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F87-102. PubMed ID: 16118395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The renal medullary microcirculation.
    Edwards A; Silldforff EP; Pallone TL
    Front Biosci; 2000 Jun; 5():E36-52. PubMed ID: 10833463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of sodium and urea in outer medullary descending vasa recta.
    Pallone TL; Work J; Myers RL; Jamison RL
    J Clin Invest; 1994 Jan; 93(1):212-22. PubMed ID: 8282790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiunit model of solute and water removal by inner medullary vasa recta.
    Edwards A; Pallone TL
    Am J Physiol; 1998 Apr; 274(4):H1202-10. PubMed ID: 9575923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model.
    Hervy S; Thomas SR
    Am J Physiol Renal Physiol; 2003 Jan; 284(1):F65-81. PubMed ID: 12388411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal medullary microcirculation: architecture and exchange.
    Michel CC
    Microcirculation; 1995 Aug; 2(2):125-39. PubMed ID: 7497165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability.
    Bankir L; Chen K; Yang B
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F144-51. PubMed ID: 12965892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycles and separations in a model of the renal medulla.
    Thomas SR
    Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.