BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12824167)

  • 21. Molecular cloning and characterization of a human mitochondrial ceramidase.
    El Bawab S; Roddy P; Qian T; Bielawska A; Lemasters JJ; Hannun YA
    J Biol Chem; 2000 Jul; 275(28):21508-13. PubMed ID: 10781606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cDNA cloning, expression and functional characterization of an Arabidopsis thaliana homologue of the Escherichia coli DNA repair enzyme endonuclease III.
    Roldán-Arjona T; García-Ortiz MV; Ruiz-Rubio M; Ariza RR
    Plant Mol Biol; 2000 Sep; 44(1):43-52. PubMed ID: 11094978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication?
    Aziz M; Chapman KD
    Trends Plant Sci; 2020 Mar; 25(3):236-249. PubMed ID: 31919033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines.
    Kilaru A; Tamura P; Isaac G; Welti R; Venables BJ; Seier E; Chapman KD
    Planta; 2012 Sep; 236(3):809-24. PubMed ID: 22673881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fatty acid amide hydrolase (FAAH).
    Ueda N; Puffenbarger RA; Yamamoto S; Deutsch DG
    Chem Phys Lipids; 2000 Nov; 108(1-2):107-21. PubMed ID: 11106785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase.
    Hayes AC; Stupak J; Li J; Cox AD
    J Lipid Res; 2013 Feb; 54(2):457-66. PubMed ID: 23187822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The N-acylethanolamine-mediated regulatory pathway in plants.
    Kilaru A; Blancaflor EB; Venables BJ; Tripathy S; Mysore KS; Chapman KD
    Chem Biodivers; 2007 Aug; 4(8):1933-55. PubMed ID: 17712835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization of human and mouse fatty acid amide hydrolases.
    Giang DK; Cravatt BF
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2238-42. PubMed ID: 9122178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid.
    Pollmann S; Neu D; Weiler EW
    Phytochemistry; 2003 Feb; 62(3):293-300. PubMed ID: 12620340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase.
    Patricelli MP; Cravatt BF
    Biochemistry; 2001 May; 40(20):6107-15. PubMed ID: 11352748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
    Alhouayek M; Bottemanne P; Makriyannis A; Muccioli GG
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):474-484. PubMed ID: 28065729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid amide hydrolase and 9-lipoxygenase modulate cotton seedling growth by ethanolamide oxylipin levels.
    Arias-Gaguancela O; Aziz M; Chapman KD
    Plant Physiol; 2023 Feb; 191(2):1234-1253. PubMed ID: 36472510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery and characterization of an Arabidopsis thaliana N-acylphosphatidylethanolamine synthase.
    Faure L; Coulon D; Laroche-Traineau J; Le Guedard M; Schmitter JM; Testet E; Lessire R; Bessoule JJ
    J Biol Chem; 2009 Jul; 284(28):18734-41. PubMed ID: 19447891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression and secretion of N-acylethanolamine-hydrolysing acid amidase in human prostate cancer cells.
    Wang J; Zhao LY; Uyama T; Tsuboi K; Wu XX; Kakehi Y; Ueda N
    J Biochem; 2008 Nov; 144(5):685-90. PubMed ID: 18806270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced seedling growth by 3-
    Arias-Gaguancela O; Adhikari B; Aziz M; Chapman KD
    Plant Direct; 2022 Jul; 6(7):e421. PubMed ID: 35844778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase.
    Bohlmann J; Martin D; Oldham NJ; Gershenzon J
    Arch Biochem Biophys; 2000 Mar; 375(2):261-9. PubMed ID: 10700382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis.
    Khan BR; Faure L; Chapman KD; Blancaflor EB
    Sci Rep; 2017 Jan; 7():41121. PubMed ID: 28112243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function of fatty acid amide hydrolase.
    McKinney MK; Cravatt BF
    Annu Rev Biochem; 2005; 74():411-32. PubMed ID: 15952893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide.
    Komeda H; Harada H; Washika S; Sakamoto T; Ueda M; Asano Y
    Eur J Biochem; 2004 Apr; 271(8):1580-90. PubMed ID: 15066183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two legume fatty acid amide hydrolase isoforms with distinct preferences for microbial- and plant-derived acylamides.
    Arias-Gaguancela O; Herrell E; Aziz M; Chapman KD
    Sci Rep; 2023 May; 13(1):7486. PubMed ID: 37161076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.