BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12824167)

  • 41. Characterization of plant beta-ureidopropionase and functional overexpression in Escherichia coli.
    Walsh TA; Green SB; Larrinua IM; Schmitzer PR
    Plant Physiol; 2001 Feb; 125(2):1001-11. PubMed ID: 11161056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational insights into function and inhibition of fatty acid amide hydrolase.
    Palermo G; Rothlisberger U; Cavalli A; De Vivo M
    Eur J Med Chem; 2015 Feb; 91():15-26. PubMed ID: 25240419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.
    Teaster ND; Motes CM; Tang Y; Wiant WC; Cotter MQ; Wang YS; Kilaru A; Venables BJ; Hasenstein KH; Gonzalez G; Blancaflor EB; Chapman KD
    Plant Cell; 2007 Aug; 19(8):2454-69. PubMed ID: 17766402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arabidopsis amidase 1, a member of the amidase signature family.
    Neu D; Lehmann T; Elleuche S; Pollmann S
    FEBS J; 2007 Jul; 274(13):3440-51. PubMed ID: 17555521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An endocannabinoid catabolic enzyme FAAH and its paralogs in an early land plant reveal evolutionary and functional relationship with eukaryotic orthologs.
    Haq I; Kilaru A
    Sci Rep; 2020 Feb; 10(1):3115. PubMed ID: 32080293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines.
    Mulder AM; Cravatt BF
    Biochemistry; 2006 Sep; 45(38):11267-77. PubMed ID: 16981687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and biochemical characterization of plant acylamino acid-releasing enzyme.
    Yamauchi Y; Ejiri Y; Toyoda Y; Tanaka K
    J Biochem; 2003 Aug; 134(2):251-7. PubMed ID: 12966075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase.
    McKinney MK; Cravatt BF
    J Biol Chem; 2003 Sep; 278(39):37393-9. PubMed ID: 12734197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use.
    Chiang KP; Gerber AL; Sipe JC; Cravatt BF
    Hum Mol Genet; 2004 Sep; 13(18):2113-9. PubMed ID: 15254019
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells.
    Mizoguchi T; Gotoh Y; Nishida E; Yamaguchi-Shinozaki K; Hayashida N; Iwasaki T; Kamada H; Shinozaki K
    Plant J; 1994 Jan; 5(1):111-22. PubMed ID: 8130795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development.
    Gómez-Merino FC; Arana-Ceballos FA; Trejo-Téllez LI; Skirycz A; Brearley CA; Dörmann P; Mueller-Roeber B
    J Biol Chem; 2005 Oct; 280(41):34888-99. PubMed ID: 16081412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.
    Fieulaine S; Desmadril M; Meinnel T; Giglione C
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):242-52. PubMed ID: 24531459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase.
    Tsuboi K; Sun YX; Okamoto Y; Araki N; Tonai T; Ueda N
    J Biol Chem; 2005 Mar; 280(12):11082-92. PubMed ID: 15655246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli.
    Jiang S; Li C; Zhang W; Cai Y; Yang Y; Yang S; Jiang W
    Biochem J; 2007 Mar; 402(3):429-37. PubMed ID: 17121498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis.
    Kang L; Wang YS; Uppalapati SR; Wang K; Tang Y; Vadapalli V; Venables BJ; Chapman KD; Blancaflor EB; Mysore KS
    Plant J; 2008 Oct; 56(2):336-349. PubMed ID: 18643971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A MBP-FAAH fusion protein as a tool to produce human and rat fatty acid amide hydrolase: expression and pharmacological comparison.
    Labar G; Vliet FV; Wouters J; Lambert DM
    Amino Acids; 2008 Jan; 34(1):127-33. PubMed ID: 17476568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. S-stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase.
    Komeda H; Harada H; Washika S; Sakamoto T; Ueda M; Asano Y
    Eur J Biochem; 2004 Apr; 271(8):1465-75. PubMed ID: 15066172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional expression of uridine 5'-diphospho-glucose 4-epimerase (EC 5.1.3.2) from Arabidopsis thaliana in Saccharomyces cerevisiae and Escherichia coli.
    Dörmann P; Benning C
    Arch Biochem Biophys; 1996 Mar; 327(1):27-34. PubMed ID: 8615692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana.
    Ridderström M; Mannervik B
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):449-54. PubMed ID: 9065762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An FMN hydrolase is fused to a riboflavin kinase homolog in plants.
    Sandoval FJ; Roje S
    J Biol Chem; 2005 Nov; 280(46):38337-45. PubMed ID: 16183635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.