BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12824382)

  • 1. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1.
    Eisenhaber F; Eisenhaber B; Kubina W; Maurer-Stroh S; Neuberger G; Schneider G; Wildpaner M
    Nucleic Acids Res; 2003 Jul; 31(13):3631-4. PubMed ID: 12824382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):523-40. PubMed ID: 11955007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence.
    Neuberger G; Maurer-Stroh S; Eisenhaber B; Hartig A; Eisenhaber F
    J Mol Biol; 2003 May; 328(3):581-92. PubMed ID: 12706718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Eisenhaber B; Schneider G; Wildpaner M; Eisenhaber F
    J Mol Biol; 2004 Mar; 337(2):243-53. PubMed ID: 15003443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of sequence signals for lipid post-translational modifications: insights from case studies.
    Eisenhaber B; Eisenhaber F; Maurer-Stroh S; Neuberger G
    Proteomics; 2004 Jun; 4(6):1614-25. PubMed ID: 15174131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of potential GPI-modification sites in proprotein sequences.
    Eisenhaber B; Bork P; Eisenhaber F
    J Mol Biol; 1999 Sep; 292(3):741-58. PubMed ID: 10497036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes.
    Eisenhaber B; Bork P; Eisenhaber F
    Protein Eng; 2001 Jan; 14(1):17-25. PubMed ID: 11287675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria.
    Duronio RJ; Jackson-Machelski E; Heuckeroth RO; Olins PO; Devine CS; Yonemoto W; Slice LW; Taylor SS; Gordon JI
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1506-10. PubMed ID: 2406721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice.
    Eisenhaber B; Wildpaner M; Schultz CJ; Borner GH; Dupree P; Eisenhaber F
    Plant Physiol; 2003 Dec; 133(4):1691-701. PubMed ID: 14681532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins.
    Neuberger G; Kunze M; Eisenhaber F; Berger J; Hartig A; Brocard C
    Genome Biol; 2004; 5(12):R97. PubMed ID: 15575971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying novel peroxisomal proteins.
    Hawkins J; Mahony D; Maetschke S; Wakabayashi M; Teasdale RD; Bodén M
    Proteins; 2007 Nov; 69(3):606-16. PubMed ID: 17636571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins.
    Eisenhaber B; Maurer-Stroh S; Novatchkova M; Schneider G; Eisenhaber F
    Bioessays; 2003 Apr; 25(4):367-85. PubMed ID: 12655644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPero, a Computational Model for Plant PTS1 Type Peroxisomal Protein Prediction.
    Wang J; Wang Y; Gao C; Jiang L; Guo D
    PLoS One; 2017; 12(1):e0168912. PubMed ID: 28045983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure?
    Eisenhaber B; Eisenhaber F
    Curr Protein Pept Sci; 2007 Apr; 8(2):197-203. PubMed ID: 17430201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Evaluation of Peroxisomal Targeting Signals in Metazoa.
    Kunze M
    Methods Mol Biol; 2023; 2643():391-404. PubMed ID: 36952201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity.
    Skoulding NS; Chowdhary G; Deus MJ; Baker A; Reumann S; Warriner SL
    J Mol Biol; 2015 Mar; 427(5):1085-101. PubMed ID: 25498386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s).
    Reumann S; Chowdhary G; Lingner T
    Biochim Biophys Acta; 2016 May; 1863(5):790-803. PubMed ID: 26772785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetratricopeptide repeat domain of Yarrowia lipolytica Pex5p is essential for recognition of the type 1 peroxisomal targeting signal but does not confer full biological activity on Pex5p.
    Szilard RK; Rachubinski RA
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):177-84. PubMed ID: 10657255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered membrane association of p60v-src and a murine 63-kDa N-myristoyl protein after incorporation of an oxygen-substituted analog of myristic acid.
    Heuckeroth RO; Gordon JI
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5262-6. PubMed ID: 2501783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.