BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

694 related articles for article (PubMed ID: 12824449)

  • 1. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation.
    Kaneko K; Kawai S; Fuchigami Y; Shiraishi G; Ito T
    J Neurol Sci; 1996 Jul; 139(1):131-6. PubMed ID: 8836984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction.
    Inghilleri M; Berardelli A; Cruccu G; Manfredi M
    J Physiol; 1993 Jul; 466():521-34. PubMed ID: 8410704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans.
    Seifert T; Petersen NC
    Acta Physiol (Oxf); 2010 Jul; 199(3):317-26. PubMed ID: 20136794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticospinal output and loss of force during motor fatigue.
    Rösler KM; Scheidegger O; Magistris MR
    Exp Brain Res; 2009 Aug; 197(2):111-23. PubMed ID: 19572125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive spinal motor neuron discharges following single transcranial magnetic stimuli: a quantitative study.
    Z'Graggen WJ; Humm AM; Durisch N; Magistris MR; Rösler KM
    Clin Neurophysiol; 2005 Jul; 116(7):1628-37. PubMed ID: 15908271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis.
    Perretti A; Balbi P; Orefice G; Trojano L; Marcantonio L; Brescia-Morra V; Ascione S; Manganelli F; Conte G; Santoro L
    Clin Neurophysiol; 2004 Sep; 115(9):2128-33. PubMed ID: 15294215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas.
    Cogiamanian F; Marceglia S; Ardolino G; Barbieri S; Priori A
    Eur J Neurosci; 2007 Jul; 26(1):242-9. PubMed ID: 17614951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL; Todd G; Gandevia SC
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):400-5. PubMed ID: 16620309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatiguing exercise attenuates pain-induced corticomotor excitability.
    Hoeger Bement MK; Weyer A; Hartley S; Yoon T; Hunter SK
    Neurosci Lett; 2009 Mar; 452(2):209-13. PubMed ID: 19383441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.
    Lévénez M; Garland SJ; Klass M; Duchateau J
    J Neurophysiol; 2008 Feb; 99(2):554-63. PubMed ID: 18046002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patients with primary biliary cirrhosis do not show post-exercise depression of cortical excitability.
    Cerri G; Cocchi CA; Montagna M; Zuin M; Podda M; Cavallari P; Selmi C
    Clin Neurophysiol; 2010 Aug; 121(8):1321-8. PubMed ID: 20363183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fatiguing maximal voluntary contraction on excitatory and inhibitory responses elicited by transcranial magnetic motor cortex stimulation.
    McKay WB; Stokic DS; Sherwood AM; Vrbova G; Dimitrijevic MR
    Muscle Nerve; 1996 Aug; 19(8):1017-24. PubMed ID: 8756168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.