These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12824484)

  • 1. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex.
    Katoh E; Louis JM; Yamazaki T; Gronenborn AM; Torchia DA; Ishima R
    Protein Sci; 2003 Jul; 12(7):1376-85. PubMed ID: 12824484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases.
    Tóth G; Borics A
    Biochemistry; 2006 May; 45(21):6606-14. PubMed ID: 16716071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations.
    Pietrucci F; Marinelli F; Carloni P; Laio A
    J Am Chem Soc; 2009 Aug; 131(33):11811-8. PubMed ID: 19645490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
    Deshmukh L; Tugarinov V; Louis JM; Clore GM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9855-E9862. PubMed ID: 29087351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution.
    Ishima R; Louis JM; Torchia DA
    J Mol Biol; 2001 Jan; 305(3):515-21. PubMed ID: 11152609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flap opening mechanism of HIV-1 protease.
    Tóth G; Borics A
    J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN
    Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational flexibility in the flap domains of ligand-free HIV protease.
    Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trp42 rotamers report reduced flexibility when the inhibitor acetyl-pepstatin is bound to HIV-1 protease.
    Ullrich B; Laberge M; Tölgyesi F; Szeltner Z; Polgár L; Fidy J
    Protein Sci; 2000 Nov; 9(11):2232-45. PubMed ID: 11152134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing.
    Sadiq SK; De Fabritiis G
    Proteins; 2010 Nov; 78(14):2873-85. PubMed ID: 20715057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
    Sayer JM; Liu F; Ishima R; Weber IT; Louis JM
    J Biol Chem; 2008 May; 283(19):13459-70. PubMed ID: 18281688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
    Karthik S; Senapati S
    Proteins; 2011 Jun; 79(6):1830-40. PubMed ID: 21465560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease.
    Prabu-Jeyabalan M; Nalivaika E; Schiffer CA
    J Mol Biol; 2000 Sep; 301(5):1207-20. PubMed ID: 10966816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations.
    Soares RO; Torres PHM; da Silva ML; Pascutti PG
    J Struct Biol; 2016 Aug; 195(2):216-226. PubMed ID: 27291071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.