BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12824485)

  • 1. Changes in structure and dynamics of the Fv fragment of a catalytic antibody upon binding of inhibitor.
    Kroon GJ; Mo H; Martinez-Yamout MA; Dyson HJ; Wright PE
    Protein Sci; 2003 Jul; 12(7):1386-94. PubMed ID: 12824485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone resonance assignments for the Fv fragment of the catalytic antibody NPN43C9 with bound p-nitrophenol.
    Kroon GJ; Martinez-Yamout MA; Krebs JF; Chung J; Dyson HJ; Wright PE
    J Biomol NMR; 1999 Sep; 15(1):83-4. PubMed ID: 10549136
    [No Abstract]   [Full Text] [Related]  

  • 3. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA; Stewart J; Benkovic SJ; Getzoff ED
    J Mol Biol; 1994 Jan; 235(3):1098-116. PubMed ID: 8289310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the binding interface between the E-domain of Staphylococcal protein A and an antibody Fv-fragment.
    Meininger DP; Rance M; Starovasnik MA; Fairbrother WJ; Skelton NJ
    Biochemistry; 2000 Jan; 39(1):26-36. PubMed ID: 10625476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and characterization of recombinant single-chain Fv and Fv fragments derived from a set of catalytic antibodies.
    Kim SH; Schindler DG; Lindner AB; Tawfik DS; Eshhar Z
    Mol Immunol; 1997; 34(12-13):891-906. PubMed ID: 9464525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamic properties of the Fv fragment and the single-chain Fv fragment of an antibody in solution investigated by heteronuclear three-dimensional NMR spectroscopy.
    Freund C; Ross A; Plückthun A; Holak TA
    Biochemistry; 1994 Mar; 33(11):3296-303. PubMed ID: 8136365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen.
    Jäger M; Plückthun A
    J Mol Biol; 1999 Feb; 285(5):2005-19. PubMed ID: 9925781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. V
    Fernández-Quintero ML; Hoerschinger VJ; Lamp LM; Bujotzek A; Georges G; Liedl KR
    Proteins; 2020 Jul; 88(7):830-839. PubMed ID: 31904133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triabodies: single chain Fv fragments without a linker form trivalent trimers.
    Iliades P; Kortt AA; Hudson PJ
    FEBS Lett; 1997 Jun; 409(3):437-41. PubMed ID: 9224705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction in the amide hydrogen exchange rates of an anti-lysozyme Fv fragment due to formation of the Fv-lysozyme complex.
    Williams DC; Rule GS; Poljak RJ; Benjamin DC
    J Mol Biol; 1997 Aug; 270(5):751-62. PubMed ID: 9245602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional 1H NMR analyses of the antigen-antibody interactions.
    Takahashi H; Igarashi T; Shimada I; Arata Y
    Biochemistry; 1991 Mar; 30(11):2840-7. PubMed ID: 1901020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New variation on a theme: structure and mechanism of action of hydrolytic antibody 7F11, an aspartate rich relation of catalytic antibodies 17E8 and 29G11.
    Cross SS; Brady K; Stevenson JD; Sackin JR; Kenward N; Dietel A; Thomas NR
    J Immunol Methods; 2002 Nov; 269(1-2):173-95. PubMed ID: 12379361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria.
    Jäger M; Plückthun A
    FEBS Lett; 1999 Dec; 462(3):307-12. PubMed ID: 10622716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies.
    Acierno JP; Braden BC; Klinke S; Goldbaum FA; Cauerhff A
    J Mol Biol; 2007 Nov; 374(1):130-46. PubMed ID: 17916365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of an antibody Fv fragment 15N-labeled in the VL domain only.
    Goldfarb V; Wittekind M; Jeffrey PD; Mueller L; Constantine KL
    J Mol Biol; 1993 Jul; 232(1):15-22. PubMed ID: 8331656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains.
    Narayanan A; Sellers BD; Jacobson MP
    J Mol Biol; 2009 May; 388(5):941-53. PubMed ID: 19324053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural predictions of the binding site architecture for monoclonal antibody NC6.8 using computer-aided molecular modeling, ligand binding, and spectroscopy.
    Viswanathan M; Anchin JM; Droupadi PR; Mandal C; Linthicum DS; Subramaniam S
    Biophys J; 1995 Sep; 69(3):741-53. PubMed ID: 8519975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the effect of changes in conformation and compactness at the antibody V(L)-V(H) interface upon antigen binding.
    Pellequer JL; Chen Sw; Roberts VA; Tainer JA; Getzoff ED
    J Mol Recognit; 1999; 12(4):267-75. PubMed ID: 10440998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the domain-domain interaction in the construction of the antigen combining site. A comparative study by 1H-15N shift correlation NMR spectroscopy of the Fv and Fab fragments of anti-dansyl mouse monoclonal antibody.
    Takahashi H; Tamura H; Shimba N; Shimada I; Arata Y
    J Mol Biol; 1994 Oct; 243(3):494-503. PubMed ID: 7966275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.