These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 12824912)
1. Involvement of H2O2 and O2- in the cytotoxicity of N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), a novel insect-derived anti-tumor compound. Akiyama N; Natori S Cancer Sci; 2003 Apr; 94(4):400-4. PubMed ID: 12824912 [TBL] [Abstract][Full Text] [Related]
2. Anti-tumor effect of N-beta-alanyl-5-S-glutathionyldihydroxyphenylalanine (5-S-GAD), a novel anti-bacterial substance from an insect. Akiyama N; Hijikata M; Kobayashi A; Yamori T; Tsuruo T; Natori S Anticancer Res; 2000; 20(1A):357-62. PubMed ID: 10769680 [TBL] [Abstract][Full Text] [Related]
3. Correlation between the catalase level in tumor cells and their sensitivity to N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD). Nishikawa T; Nishikawa S; Akiyama N; Natori S J Biochem; 2004 Apr; 135(4):465-9. PubMed ID: 15115770 [TBL] [Abstract][Full Text] [Related]
4. A long-lived o-semiquinone radical anion is formed from N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial substance. Akiyama N; Nakanishi I; Ohkubo K; Satoh K; Tsuchiya K; Nishikawa T; Fukuzumi S; Ikota N; Ozawa T; Tsujimoto M; Natori S J Biochem; 2007 Jul; 142(1):41-8. PubMed ID: 17684029 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). Leem JY; Nishimura C; Kurata S; Shimada I; Kobayashi A; Natori S J Biol Chem; 1996 Jun; 271(23):13573-7. PubMed ID: 8662858 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of protein tyrosine kinase by 5-S-GAD, a novel antibacterial substance from an insect. Hijikata M; Kobayashi A; Leem JY; Fukasawa H; Uehara Y; Natori S Biochem Biophys Res Commun; 1997 Aug; 237(2):423-6. PubMed ID: 9268727 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory effects of 5-S-GAD on phosphorylation of V-SRC and BCR-ABL tyrosine kinase. Leem JY; Park HY; Fukazawa H; Uehara Y; Natori S Biol Pharm Bull; 1998 Jul; 21(7):784-5. PubMed ID: 9703270 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of in vivo angiogenesis by N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine. Nishikawa T; Akiyama N; Kunimasa K; Oikawa T; Ishizuka M; Tsujimoto M; Natori S Eur J Pharmacol; 2006 Jun; 539(3):151-7. PubMed ID: 16725138 [TBL] [Abstract][Full Text] [Related]
10. Neuroprotective effects of 5-S-GAD against oxidative stress-induced apoptosis in RGC-5 cells. Koriyama Y; Ohno M; Kimura T; Kato S Brain Res; 2009 Nov; 1296():187-95. PubMed ID: 19686711 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells. Shah MH; Liu GS; Thompson EW; Dusting GJ; Peshavariya HM Breast Cancer Res Treat; 2015 Apr; 150(3):523-34. PubMed ID: 25794772 [TBL] [Abstract][Full Text] [Related]
12. A novel neuroprotective role of a small peptide from flesh fly, 5-S-GAD in the rat retina in vivo. Koriyama Y; Tanii H; Ohno M; Kimura T; Kato S Brain Res; 2008 Nov; 1240():196-203. PubMed ID: 18823958 [TBL] [Abstract][Full Text] [Related]
13. Effect of 5-S-GAD on UV-B-induced cataracts in rats. Kawada H; Kojima M; Kimura T; Natori S; Sasaki K; Sasaki H Jpn J Ophthalmol; 2009 Sep; 53(5):531-5. PubMed ID: 19847611 [TBL] [Abstract][Full Text] [Related]
14. Induction of apoptosis of monocyte-macrophage lineage cells by 5-S-GAD. Hijikata M; Matsumoto HN; Kobayashi A; Nifuji A; Noda M; Natori S FEBS Lett; 1999 Sep; 457(3):405-8. PubMed ID: 10471818 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. Du J; Daniels DH; Asbury C; Venkataraman S; Liu J; Spitz DR; Oberley LW; Cullen JJ J Biol Chem; 2006 Dec; 281(49):37416-26. PubMed ID: 17040906 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase. Li R; Zhou X; Liu D; Feng W Free Radic Biol Med; 2018 Dec; 129():138-145. PubMed ID: 30227270 [TBL] [Abstract][Full Text] [Related]
17. The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Carlisi D; D'Anneo A; Martinez R; Emanuele S; Buttitta G; Di Fiore R; Vento R; Tesoriere G; Lauricella M Oncol Rep; 2014 Jul; 32(1):167-72. PubMed ID: 24859613 [TBL] [Abstract][Full Text] [Related]
18. A light-activated NO donor attenuates anchorage independent growth of cancer cells: Important role of a cross talk between NO and other reactive oxygen species. Sen S; Kawahara B; Fry NL; Farias-Eisner R; Zhang D; Mascharak PK; Chaudhuri G Arch Biochem Biophys; 2013 Dec; 540(1-2):33-40. PubMed ID: 24157690 [TBL] [Abstract][Full Text] [Related]
19. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Weydert CJ; Cullen JJ Nat Protoc; 2010 Jan; 5(1):51-66. PubMed ID: 20057381 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of toxicity of 5-S-cysteinyldopa to tumour cells. Hydrogen peroxide as a mediator of cytotoxicity. Ito S; Inoue S; Fujita K Biochem Pharmacol; 1983 Jul; 32(13):2079-81. PubMed ID: 6409113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]