These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12826411)

  • 1. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils.
    Alvarez-Ayuso E; García-Sánchez A
    Environ Pollut; 2003; 125(3):337-44. PubMed ID: 12826411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc.
    Alvarez-Ayuso E; García-Sánchez A
    Sci Total Environ; 2003 Apr; 305(1-3):1-12. PubMed ID: 12670753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.
    Vítková M; Rákosová S; Michálková Z; Komárek M
    J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal availability in soil in the presence of anionic surfactants.
    Hernandez-Soriano MC; Degryse F; Smolders E
    Commun Agric Appl Biol Sci; 2008; 73(1):157-61. PubMed ID: 18831265
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosolids-amended soils: Part II. Chemical lability as a measure of contaminant bioaccessability.
    Schwab AP; Lewis K; Banks MK
    Water Environ Res; 2006 Oct; 78(11):2231-43. PubMed ID: 17120442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling EDTA solutions used to remediate metal-polluted soils.
    Zeng QR; Sauvé S; Allen HE; Hendershot WH
    Environ Pollut; 2005 Jan; 133(2):225-31. PubMed ID: 15519453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the solubility of zinc, copper, nickel, cadmium, and lead in metal-contaminated soils.
    Zan NR; Datta SP; Rattan RK; Dwivedi BS; Meena MC
    Environ Monit Assess; 2013 Dec; 185(12):10015-25. PubMed ID: 23880914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure].
    Sun YF; Xie ZM; Xu JM; Li J; Zhao KL
    Huan Jing Ke Xue; 2005 May; 26(3):152-6. PubMed ID: 16124489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils.
    de Matos AT; Fontes MP; da Costa LM; Martinez MA
    Environ Pollut; 2001; 111(3):429-35. PubMed ID: 11202747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids.
    Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils.
    Sastre J; Rauret G; Vidal M
    Environ Pollut; 2006 Mar; 140(2):322-39. PubMed ID: 16203070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil.
    Huang B; Li Z; Huang J; Chen G; Nie X; Ma W; Yao H; Zhen J; Zeng G
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11467-77. PubMed ID: 25821039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cation exchange in the sorption of cadmium, copper and lead by soils saturated with magnesium.
    Vega FA; Covelo EF; Andrade ML
    J Hazard Mater; 2009 Nov; 171(1-3):262-7. PubMed ID: 19556057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.
    Liu T; Li F; Jin Z; Yang Y
    Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil.
    Liang X; Qin X; Huang Q; Huang R; Yin X; Cai Y; Wang L; Sun Y; Xu Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23783-23793. PubMed ID: 28866741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].
    Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL
    Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites.
    Kim J; Hyun S
    Chemosphere; 2015 Sep; 134():150-8. PubMed ID: 25935604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils.
    Sukreeyapongse O; Holm PE; Strobel BW; Panichsakpatana S; Magid J; Hansen HC
    J Environ Qual; 2002; 31(6):1901-9. PubMed ID: 12469840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.