These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12826622)

  • 21. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C
    Wakamatsu A; Mori IC; Matsuura T; Taniwaki Y; Ishii R; Yoshida R
    J Plant Physiol; 2021 Jul; 262():153448. PubMed ID: 34058643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.
    Niewiadomska E; Bilger W; Gruca M; Mulisch M; Miszalski Z; Krupinska K
    Planta; 2011 Feb; 233(2):275-85. PubMed ID: 21046147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum.
    Cushman JC
    Eur J Biochem; 1992 Sep; 208(2):259-66. PubMed ID: 1521524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum L.
    Holtum JA; Winter K
    Planta; 1982 Jun; 155(1):8-16. PubMed ID: 24271620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased Expression of a myo-Inositol Methyl Transferase in Mesembryanthemum crystallinum Is Part of a Stress Response Distinct from Crassulacean Acid Metabolism Induction.
    Vernon DM; Bohnert HJ
    Plant Physiol; 1992 Aug; 99(4):1695-8. PubMed ID: 16669095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2.
    Yoshida K; Watanabe C; Kato Y; Sakamoto W; Noguchi K
    Plant Cell Physiol; 2008 Apr; 49(4):592-603. PubMed ID: 18296449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C
    Guan Q; Kong W; Zhu D; Zhu W; Dufresne C; Tian J; Chen S
    J Proteomics; 2021 Jan; 231():104019. PubMed ID: 33075550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological Changes in
    Guan Q; Tan B; Kelley TM; Tian J; Chen S
    Front Plant Sci; 2020; 11():283. PubMed ID: 32256510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic control of photosynthetic electron transport in crassulacean acid metabolism-induced Mesembryanthemum crystallinum.
    Schöttler MA; Kirchhoff H; Weis E; Siebke K
    Funct Plant Biol; 2002 Jun; 29(6):697-705. PubMed ID: 32689516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM.
    Cosentino C; Di Silvestre D; Fischer-Schliebs E; Homann U; De Palma A; Comunian C; Mauri PL; Thiel G
    Biochem J; 2013 Mar; 450(2):407-15. PubMed ID: 23252380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant.
    Yu K; D'Odorico P; Li W; He Y
    Oecologia; 2017 Jun; 184(2):351-361. PubMed ID: 28401290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance.
    Endo T; Kawase D; Sato F
    Plant Cell Physiol; 2005 May; 46(5):775-81. PubMed ID: 15788424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid.
    Chu C; Dai Z; Ku MS; Edwards GE
    Plant Physiol; 1990 Jul; 93(3):1253-60. PubMed ID: 16667587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial characterization and expression of leaf catalase in the CAM-inducible halophyte Mesembryanthemum crystallinum L.
    Niewiadomska E; Miszalski Z
    Plant Physiol Biochem; 2008 Apr; 46(4):421-7. PubMed ID: 18203610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism.
    Winter K; Foster JG; Edwards GE; Holtum JA
    Plant Physiol; 1982 Feb; 69(2):300-7. PubMed ID: 16662197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum.
    Kore-eda S; Cushman MA; Akselrod I; Bufford D; Fredrickson M; Clark E; Cushman JC
    Gene; 2004 Oct; 341():83-92. PubMed ID: 15474291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.
    Neuhaus HE; Schulte N
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):945-53. PubMed ID: 8836142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A CAM- and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity.
    Haider MS; Barnes JD; Cushman JC; Borland AM
    J Exp Bot; 2012 Mar; 63(5):1985-96. PubMed ID: 22219316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum.
    Schaeffer HJ; Forstheoefel NR; Cushman JC
    Plant Mol Biol; 1995 May; 28(2):205-18. PubMed ID: 7599307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of gene expression of carotene biosynthesis-related protein by photosynthetic electron transport for the acclimation of intertidal macroalga Ulva fasciata to hypersalinity and excess light.
    Hsu YT; Lee TM
    Physiol Plant; 2012 Mar; 144(3):225-37. PubMed ID: 22122736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.