These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12826802)

  • 1. Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications.
    Karp JM; Rzeszutek K; Shoichet MS; Davies JE
    J Craniofac Surg; 2003 May; 14(3):317-23. PubMed ID: 12826802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bone engineering in a rabbit femur.
    Fialkov JA; Holy CE; Shoichet MS; Davies JE
    J Craniofac Surg; 2003 May; 14(3):324-32. PubMed ID: 12826803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study.
    Karp JM; Sarraf F; Shoichet MS; Davies JE
    J Biomed Mater Res A; 2004 Oct; 71(1):162-71. PubMed ID: 15368266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic research on aw-AC/PLGA composite scaffolds for bone tissue engineering.
    Minamiguchi S; Takechi M; Yuasa T; Momota Y; Tatehara S; Takano H; Miyamoto Y; Satomura K; Nagayama M
    J Mater Sci Mater Med; 2008 Mar; 19(3):1165-72. PubMed ID: 17701319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects.
    Ikeda R; Fujioka H; Nagura I; Kokubu T; Toyokawa N; Inui A; Makino T; Kaneko H; Doita M; Kurosaka M
    Int Orthop; 2009 Jun; 33(3):821-8. PubMed ID: 18415099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering.
    Andriano KP; Tabata Y; Ikada Y; Heller J
    J Biomed Mater Res; 1999; 48(5):602-12. PubMed ID: 10490673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a biomimetic strategy to engineer bone.
    Holy CE; Fialkov JA; Davies JE; Shoichet MS
    J Biomed Mater Res A; 2003 Jun; 65(4):447-53. PubMed ID: 12761834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
    Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW
    Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    Tissue Eng Part A; 2013 Apr; 19(7-8):849-59. PubMed ID: 23083104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues.
    Shpichka A; Koroleva A; Kuznetsova D; Dmitriev RI; Timashev P
    Adv Exp Med Biol; 2017; 1035():71-81. PubMed ID: 29080131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.