BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 12828290)

  • 1. Range of motion and stroke frequency differences between manual wheelchair propulsion and pushrim-activated power-assisted wheelchair propulsion.
    Corfman TA; Cooper RA; Boninger ML; Koontz AM; Fitzgerald SG
    J Spinal Cord Med; 2003; 26(2):135-40. PubMed ID: 12828290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia.
    Algood SD; Cooper RA; Fitzgerald SG; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2004 Nov; 85(11):1865-71. PubMed ID: 15520983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper limb joint dynamics during manual wheelchair propulsion.
    Desroches G; Dumas R; Pradon D; Vaslin P; Lepoutre FX; Chèze L
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):299-306. PubMed ID: 20106573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair.
    Arva J; Fitzgerald SG; Cooper RA; Boninger ML
    Med Eng Phys; 2001 Dec; 23(10):699-705. PubMed ID: 11801411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system.
    Boninger ML; Cooper RA; Shimada SD; Rudy TE
    Spinal Cord; 1998 Jun; 36(6):418-26. PubMed ID: 9648199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between median and ulnar nerve function and wrist kinematics during wheelchair propulsion.
    Boninger ML; Impink BG; Cooper RA; Koontz AM
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1141-5. PubMed ID: 15241765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury.
    Newsam CJ; Rao SS; Mulroy SJ; Gronley JK; Bontrager EL; Perry J
    Gait Posture; 1999 Dec; 10(3):223-32. PubMed ID: 10567754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system.
    Boninger ML; Cooper RA; Robertson RN; Rudy TE
    Arch Phys Med Rehabil; 1997 Apr; 78(4):364-72. PubMed ID: 9111455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury.
    Gil-Agudo A; Del Ama-Espinosa A; Pérez-Rizo E; Pérez-Nombela S; Pablo Rodríguez-Rodríguez L
    J Biomech; 2010 Sep; 43(13):2508-15. PubMed ID: 20541760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper extremity wheelchair kinematics in children with spinal cord injury.
    Slavens BA; Graf A; Krzak J; Vogel L; Harris GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8158-61. PubMed ID: 22256235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional fatigue and upper extremity sensorimotor system acuity in baseball athletes.
    Tripp BL; Yochem EM; Uhl TL
    J Athl Train; 2007; 42(1):90-8. PubMed ID: 17597949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.
    Schnorenberg AJ; Slavens BA; Wang M; Vogel LC; Smith PA; Harris GF
    J Biomech; 2014 Jan; 47(1):269-76. PubMed ID: 24309622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trunk and shoulder kinematic and kinetic and electromyographic adaptations to slope increase during motorized treadmill propulsion among manual wheelchair users with a spinal cord injury.
    Gagnon D; Babineau AC; Champagne A; Desroches G; Aissaoui R
    Biomed Res Int; 2015; 2015():636319. PubMed ID: 25793200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.