These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 12828861)
1. The incorporation of an ion channel gene mutation associated with the long QT syndrome (Q9E-hMiRP1) in a plasmid vector for site-specific arrhythmia gene therapy: in vitro and in vivo feasibility studies. Burton DY; Song C; Fishbein I; Hazelwood S; Li Q; DeFelice S; Connolly JM; Perlstein I; Coulter DA; Levy RJ Hum Gene Ther; 2003 Jun; 14(9):907-22. PubMed ID: 12828861 [TBL] [Abstract][Full Text] [Related]
2. Posttranslational control of a cardiac ion channel transgene in vivo: clarithromycin-hMiRP1-Q9E interactions. Perlstein I; Burton DY; Ryan K; Defelice S; Simmers E; Campbell B; Connolly JM; Hoffman A; Levy RJ Hum Gene Ther; 2005 Jul; 16(7):906-10. PubMed ID: 16000071 [TBL] [Abstract][Full Text] [Related]
3. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6. Lu Y; Mahaut-Smith MP; Huang CL; Vandenberg JI J Physiol; 2003 Aug; 551(Pt 1):253-62. PubMed ID: 12923204 [TBL] [Abstract][Full Text] [Related]
5. Characterization and subcellular localization of KCNQ1 with a heterozygous mutation in the C terminus. Yamashita F; Horie M; Kubota T; Yoshida H; Yumoto Y; Kobori A; Ninomiya T; Kono Y; Haruna T; Tsuji K; Washizuka T; Takano M; Otani H; Sasayama S; Aizawa Y J Mol Cell Cardiol; 2001 Feb; 33(2):197-207. PubMed ID: 11162126 [TBL] [Abstract][Full Text] [Related]
6. Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome. Thomas D; Wimmer AB; Karle CA; Licka M; Alter M; Khalil M; Ulmer HE; Kathöfer S; Kiehn J; Katus HA; Schoels W; Koenen M; Zehelein J Cardiovasc Res; 2005 Aug; 67(3):487-97. PubMed ID: 15950200 [TBL] [Abstract][Full Text] [Related]
7. [Molecular genetics in the hereditary form of long QT syndrome]. Georgijević Milić L Med Pregl; 2000; 53(1-2):51-4. PubMed ID: 10953551 [TBL] [Abstract][Full Text] [Related]
8. HERG mutation predicts short QT based on channel kinetics but causes long QT by heterotetrameric trafficking deficiency. Paulussen AD; Raes A; Jongbloed RJ; Gilissen RA; Wilde AA; Snyders DJ; Smeets HJ; Aerssens J Cardiovasc Res; 2005 Aug; 67(3):467-75. PubMed ID: 15958262 [TBL] [Abstract][Full Text] [Related]
9. A novel minimal-size vector (MIDGE) improves transgene expression in colon carcinoma cells and avoids transfection of undesired DNA. Schakowski F; Gorschlüter M; Junghans C; Schroff M; Buttgereit P; Ziske C; Schöttker B; König-Merediz SA; Sauerbruch T; Wittig B; Schmidt-Wolf IG Mol Ther; 2001 May; 3(5 Pt 1):793-800. PubMed ID: 11356084 [TBL] [Abstract][Full Text] [Related]
10. Biophysical characterization of KCNQ1 P320 mutations linked to long QT syndrome 1. Thomas D; Khalil M; Alter M; Schweizer PA; Karle CA; Wimmer AB; Licka M; Katus HA; Koenen M; Ulmer HE; Zehelein J J Mol Cell Cardiol; 2010 Jan; 48(1):230-7. PubMed ID: 19540844 [TBL] [Abstract][Full Text] [Related]
11. Electrophysiological phenotype in the LQTS mutations Y111C and R518X in the KCNQ1 gene. Diamant UB; Vahedi F; Winbo A; Rydberg A; Stattin EL; Jensen SM; Bergfeldt L J Appl Physiol (1985); 2013 Nov; 115(10):1423-32. PubMed ID: 24052033 [TBL] [Abstract][Full Text] [Related]
12. Canine ventricular KCNE2 expression resides predominantly in Purkinje fibers. Pourrier M; Zicha S; Ehrlich J; Han W; Nattel S Circ Res; 2003 Aug; 93(3):189-91. PubMed ID: 12842918 [TBL] [Abstract][Full Text] [Related]
13. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Zhao J; Pettigrew GJ; Thomas J; Vandenberg JI; Delriviere L; Bolton EM; Carmichael A; Martin JL; Marber MS; Lever AM Basic Res Cardiol; 2002 Sep; 97(5):348-58. PubMed ID: 12200634 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome. Frank-Hansen R; Larsen LA; Andersen P; Jespersgaard C; Christiansen M Clin Chim Acta; 2005 Jan; 351(1-2):95-100. PubMed ID: 15563876 [TBL] [Abstract][Full Text] [Related]
15. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Jongbloed R; Marcelis C; Velter C; Doevendans P; Geraedts J; Smeets H Hum Mutat; 2002 Nov; 20(5):382-91. PubMed ID: 12402336 [TBL] [Abstract][Full Text] [Related]
16. Biophysical characteristics of a new mutation on the KCNQ1 potassium channel (L251P) causing long QT syndrome. Deschênes D; Acharfi S; Pouliot V; Hegele R; Krahn A; Daleau P; Chahine M Can J Physiol Pharmacol; 2003 Feb; 81(2):129-34. PubMed ID: 12710526 [TBL] [Abstract][Full Text] [Related]
17. Use of a bicistronic GFP-expression vector to characterise ion channels after transfection in mammalian cells. Trouet D; Nilius B; Voets T; Droogmans G; Eggermont J Pflugers Arch; 1997 Sep; 434(5):632-8. PubMed ID: 9242728 [TBL] [Abstract][Full Text] [Related]
19. Clinical and electrophysiological characterization of a novel mutation (F193L) in the KCNQ1 gene associated with long QT syndrome. Yamaguchi M; Shimizu M; Ino H; Terai H; Hayashi K; Mabuchi H; Hoshi N; Higashida H Clin Sci (Lond); 2003 Apr; 104(4):377-82. PubMed ID: 12653681 [TBL] [Abstract][Full Text] [Related]
20. Mutation analysis in congenital Long QT Syndrome--a case with missense mutations in KCNQ1 and SCN5A. Paulussen A; Matthijs G; Gewillig M; Verhasselt P; Cohen N; Aerssens J Genet Test; 2003; 7(1):57-61. PubMed ID: 12820704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]