BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12829266)

  • 1. Zn, Cu and Co in cyanobacteria: selective control of metal availability.
    Cavet JS; Borrelly GP; Robinson NJ
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):165-81. PubMed ID: 12829266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding how cells allocate metals using metal sensors and metallochaperones.
    Tottey S; Harvie DR; Robinson NJ
    Acc Chem Res; 2005 Oct; 38(10):775-83. PubMed ID: 16231873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems.
    Gaballa A; Helmann JD
    Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis.
    Liu T; Nakashima S; Hirose K; Uemura Y; Shibasaka M; Katsuhara M; Kasamo K
    FEBS Lett; 2003 May; 542(1-3):159-63. PubMed ID: 12729917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions.
    Mohapatra H; Gupta R
    Bioresour Technol; 2005 Aug; 96(12):1387-98. PubMed ID: 15792587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells.
    Osman D; Piergentili C; Chen J; Chakrabarti B; Foster AW; Lurie-Luke E; Huggins TG; Robinson NJ
    J Biol Chem; 2015 Aug; 290(32):19806-22. PubMed ID: 26109070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals.
    Bontidean I; Lloyd JR; Hobman JL; Wilson JR; Csöregi E; Mattiasson B; Brown NL
    J Inorg Biochem; 2000 Apr; 79(1-4):225-9. PubMed ID: 10830870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity.
    Blindauer CA; Harrison MD; Parkinson JA; Robinson AK; Cavet JS; Robinson NJ; Sadler PJ
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9593-8. PubMed ID: 11493688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.
    Wójtowicz H; Bielecki M; Wojaczyński J; Olczak M; Smalley JW; Olczak T
    Metallomics; 2013 Apr; 5(4):343-51. PubMed ID: 23392445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential metals in health and disease.
    Jomova K; Makova M; Alomar SY; Alwasel SH; Nepovimova E; Kuca K; Rhodes CJ; Valko M
    Chem Biol Interact; 2022 Nov; 367():110173. PubMed ID: 36152810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for protection against copper toxicity.
    Dameron CT; Harrison MD
    Am J Clin Nutr; 1998 May; 67(5 Suppl):1091S-1097S. PubMed ID: 9587158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural elements of metal selectivity in metal sensor proteins.
    Pennella MA; Shokes JE; Cosper NJ; Scott RA; Giedroc DP
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3713-8. PubMed ID: 12651949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1).
    Guerrerio AL; Berg JM
    Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity.
    Borrelly GP; Rondet SA; Tottey S; Robinson NJ
    Mol Microbiol; 2004 Jul; 53(1):217-27. PubMed ID: 15225316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanobacterial metallochaperone inhibits deleterious side reactions of copper.
    Tottey S; Patterson CJ; Banci L; Bertini I; Felli IC; Pavelkova A; Dainty SJ; Pernil R; Waldron KJ; Foster AW; Robinson NJ
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):95-100. PubMed ID: 22198771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942.
    Kanamaru K; Kashiwagi S; Mizuno T
    Mol Microbiol; 1994 Jul; 13(2):369-77. PubMed ID: 7984114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IRON AND other metals in hemotopoiesis.
    Nutr Rev; 1955 Oct; 13(10):292-5. PubMed ID: 13266223
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.