These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 12829266)
1. Zn, Cu and Co in cyanobacteria: selective control of metal availability. Cavet JS; Borrelly GP; Robinson NJ FEMS Microbiol Rev; 2003 Jun; 27(2-3):165-81. PubMed ID: 12829266 [TBL] [Abstract][Full Text] [Related]
2. Understanding how cells allocate metals using metal sensors and metallochaperones. Tottey S; Harvie DR; Robinson NJ Acc Chem Res; 2005 Oct; 38(10):775-83. PubMed ID: 16231873 [TBL] [Abstract][Full Text] [Related]
3. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Gaballa A; Helmann JD Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235 [TBL] [Abstract][Full Text] [Related]
4. A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis. Liu T; Nakashima S; Hirose K; Uemura Y; Shibasaka M; Katsuhara M; Kasamo K FEBS Lett; 2003 May; 542(1-3):159-63. PubMed ID: 12729917 [TBL] [Abstract][Full Text] [Related]
5. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Mohapatra H; Gupta R Bioresour Technol; 2005 Aug; 96(12):1387-98. PubMed ID: 15792587 [TBL] [Abstract][Full Text] [Related]
6. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells. Osman D; Piergentili C; Chen J; Chakrabarti B; Foster AW; Lurie-Luke E; Huggins TG; Robinson NJ J Biol Chem; 2015 Aug; 290(32):19806-22. PubMed ID: 26109070 [TBL] [Abstract][Full Text] [Related]
7. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. Bontidean I; Lloyd JR; Hobman JL; Wilson JR; Csöregi E; Mattiasson B; Brown NL J Inorg Biochem; 2000 Apr; 79(1-4):225-9. PubMed ID: 10830870 [TBL] [Abstract][Full Text] [Related]
8. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Liu T; Golden JW; Giedroc DP Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774 [TBL] [Abstract][Full Text] [Related]
9. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
10. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX. Wójtowicz H; Bielecki M; Wojaczyński J; Olczak M; Smalley JW; Olczak T Metallomics; 2013 Apr; 5(4):343-51. PubMed ID: 23392445 [TBL] [Abstract][Full Text] [Related]
11. Essential metals in health and disease. Jomova K; Makova M; Alomar SY; Alwasel SH; Nepovimova E; Kuca K; Rhodes CJ; Valko M Chem Biol Interact; 2022 Nov; 367():110173. PubMed ID: 36152810 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms for protection against copper toxicity. Dameron CT; Harrison MD Am J Clin Nutr; 1998 May; 67(5 Suppl):1091S-1097S. PubMed ID: 9587158 [TBL] [Abstract][Full Text] [Related]
13. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1). Guerrerio AL; Berg JM Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909 [TBL] [Abstract][Full Text] [Related]
14. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Borrelly GP; Rondet SA; Tottey S; Robinson NJ Mol Microbiol; 2004 Jul; 53(1):217-27. PubMed ID: 15225316 [TBL] [Abstract][Full Text] [Related]
16. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Hunt JA; Ahmed M; Fierke CA Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479 [TBL] [Abstract][Full Text] [Related]
17. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Kanamaru K; Kashiwagi S; Mizuno T Mol Microbiol; 1994 Jul; 13(2):369-77. PubMed ID: 7984114 [TBL] [Abstract][Full Text] [Related]
18. IRON AND other metals in hemotopoiesis. Nutr Rev; 1955 Oct; 13(10):292-5. PubMed ID: 13266223 [No Abstract] [Full Text] [Related]
19. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases. Jordan IK; Natale DA; Koonin EV; Galperin MY J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622 [TBL] [Abstract][Full Text] [Related]
20. Interactions between metallothionein and trace elements. Bremner I Prog Food Nutr Sci; 1987; 11(1):1-37. PubMed ID: 3303133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]