These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 12829273)

  • 21. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.
    Paulsen IT; Nguyen L; Sliwinski MK; Rabus R; Saier MH
    J Mol Biol; 2000 Aug; 301(1):75-100. PubMed ID: 10926494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zn(II) metabolism in prokaryotes.
    Blencowe DK; Morby AP
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):291-311. PubMed ID: 12829272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34.
    Nies DH; Rehbein G; Hoffmann T; Baumann C; Grosse C
    J Mol Microbiol Biotechnol; 2006; 11(1-2):82-93. PubMed ID: 16825791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial resistances to toxic metal ions--a review.
    Silver S
    Gene; 1996 Nov; 179(1):9-19. PubMed ID: 8991852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus.
    Penaud S; Fernandez A; Boudebbouze S; Ehrlich SD; Maguin E; van de Guchte M
    Appl Environ Microbiol; 2006 Dec; 72(12):7445-54. PubMed ID: 16997986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions.
    Silver S; Nucifora G; Chu L; Misra TK
    Trends Biochem Sci; 1989 Feb; 14(2):76-80. PubMed ID: 2523097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance.
    Maynaud G; Brunel B; Yashiro E; Mergeay M; Cleyet-Marel JC; Le Quéré A
    Res Microbiol; 2014 Apr; 165(3):175-89. PubMed ID: 24607711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance.
    Tong L; Nakashima S; Shibasaka M; Katsuhara M; Kasamo K
    J Bacteriol; 2002 Sep; 184(18):5027-35. PubMed ID: 12193618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
    Scherer J; Nies DH
    Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Families of soft-metal-ion-transporting ATPases.
    Rensing C; Ghosh M; Rosen BP
    J Bacteriol; 1999 Oct; 181(19):5891-7. PubMed ID: 10498699
    [No Abstract]   [Full Text] [Related]  

  • 33. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel family of ubiquitous heavy metal ion transport proteins.
    Paulsen IT; Saier MH
    J Membr Biol; 1997 Mar; 156(2):99-103. PubMed ID: 9075641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal ion homeostasis and intracellular parasitism.
    Agranoff DD; Krishna S
    Mol Microbiol; 1998 May; 28(3):403-12. PubMed ID: 9632246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.
    Keeran NS; Ganesan G; Parida AK
    Transgenic Res; 2017 Apr; 26(2):247-261. PubMed ID: 27888434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal transport by the CusCFBA efflux system.
    Delmar JA; Su CC; Yu EW
    Protein Sci; 2015 Nov; 24(11):1720-36. PubMed ID: 26258953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review.
    Ahearn GA; Mandal PK; Mandal A
    J Comp Physiol B; 2004 Aug; 174(6):439-52. PubMed ID: 15243714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
    Montanini B; Blaudez D; Jeandroz S; Sanders D; Chalot M
    BMC Genomics; 2007 Apr; 8():107. PubMed ID: 17448255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.