BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12829278)

  • 1. Microbial ferric iron reductases.
    Schröder I; Johnson E; de Vries S
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):427-47. PubMed ID: 12829278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Assimilatory ferric reductases in enterococci].
    Lisiecki P; Mikucki J
    Med Dosw Mikrobiol; 2005; 57(4):359-68. PubMed ID: 16773829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus.
    Vadas A; Monbouquette HG; Johnson E; Schröder I
    J Biol Chem; 1999 Dec; 274(51):36715-21. PubMed ID: 10593977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferric iron reductases and their contribution to unicellular ferrous iron uptake.
    Cain TJ; Smith AT
    J Inorg Biochem; 2021 May; 218():111407. PubMed ID: 33684686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of iron by enterococci: some properties and role of assimilating ferric iron reductases.
    Lisiecki P; Mikucki J
    Pol J Microbiol; 2006; 55(4):271-7. PubMed ID: 17416063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferric reductases or flavin reductases?
    Fontecave M; Covès J; Pierre JL
    Biometals; 1994 Jan; 7(1):3-8. PubMed ID: 8118169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron metabolism in the social amoeba Dictyostelium discoideum: A role for ferric chelate reductases.
    Peracino B; Monica V; Primo L; Bracco E; Bozzaro S
    Eur J Cell Biol; 2022; 101(3):151230. PubMed ID: 35550931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bradyrhizobium japonicum frcB gene encodes a diheme ferric reductase.
    Small SK; O'Brian MR
    J Bacteriol; 2011 Aug; 193(16):4088-94. PubMed ID: 21705608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans.
    Sedláček V; van Spanning RJM; Kučera I
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry for an essential biological process: the reduction of ferric iron.
    Pierre JL; Fontecave M; Crichton RR
    Biometals; 2002 Dec; 15(4):341-6. PubMed ID: 12405527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity.
    Rocco-Machado N; Cosentino-Gomes D; Nascimento MT; Paes-Vieira L; Khan YA; Mittra B; Andrews NW; Meyer-Fernandes JR
    Free Radic Biol Med; 2019 Nov; 143():341-353. PubMed ID: 31446054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors.
    Baek YU; Li M; Davis DA
    Eukaryot Cell; 2008 Jul; 7(7):1168-79. PubMed ID: 18503007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox cycling in iron uptake, efflux, and trafficking.
    Kosman DJ
    J Biol Chem; 2010 Aug; 285(35):26729-26735. PubMed ID: 20522542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain evolution and functional diversification of sulfite reductases.
    Dhillon A; Goswami S; Riley M; Teske A; Sogin M
    Astrobiology; 2005 Feb; 5(1):18-29. PubMed ID: 15711167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin mononucleotide-binding flavoprotein family in the domain Archaea.
    Ding YH; Ferry JG
    J Bacteriol; 2004 Jan; 186(1):90-7. PubMed ID: 14679228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum.
    Glanfield A; McManus DP; Smyth DJ; Lovas EM; Loukas A; Gobert GN; Jones MK
    PLoS Negl Trop Dis; 2010 Nov; 4(11):e884. PubMed ID: 21103361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide reduction mechanism of Archaeoglobus fulgidus one-iron superoxide reductase.
    Rodrigues JV; Abreu IA; Cabelli D; Teixeira M
    Biochemistry; 2006 Aug; 45(30):9266-78. PubMed ID: 16866373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.