These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 12829297)
1. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. Raghunand TR; Mahadevan S FEMS Microbiol Lett; 2003 Jun; 223(2):267-74. PubMed ID: 12829297 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. Kharat AS; Mahadevan S Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. el Hassouni M; Henrissat B; Chippaux M; Barras F J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212 [TBL] [Abstract][Full Text] [Related]
4. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( Zhang Z; Zhou K; Tran D; Saier M Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163427 [TBL] [Abstract][Full Text] [Related]
5. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710 [TBL] [Abstract][Full Text] [Related]
6. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. Schnetz K; Toloczyki C; Rak B J Bacteriol; 1987 Jun; 169(6):2579-90. PubMed ID: 3034860 [TBL] [Abstract][Full Text] [Related]
7. Phenotypic variability of beta-glucoside utilization and its correlation to pathogenesis process in a few enteric bacteria. Kharat AS FEMS Microbiol Lett; 2001 May; 199(2):241-6. PubMed ID: 11377874 [TBL] [Abstract][Full Text] [Related]
8. BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. Bardowski J; Ehrlich SD; Chopin A J Bacteriol; 1994 Sep; 176(18):5681-5. PubMed ID: 8083160 [TBL] [Abstract][Full Text] [Related]
9. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm. Harwani D Braz J Microbiol; 2014; 45(4):1139-44. PubMed ID: 25763016 [TBL] [Abstract][Full Text] [Related]
10. Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site. Beloin C; Hirschbein L; Le Hégarat F Mol Gen Genet; 1996 Apr; 250(6):761-6. PubMed ID: 8628237 [TBL] [Abstract][Full Text] [Related]
11. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Defez R; De Felice M Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Mahren S; Schnell H; Braun V Arch Microbiol; 2005 Nov; 184(3):175-86. PubMed ID: 16193283 [TBL] [Abstract][Full Text] [Related]
13. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Desai SK; Nandimath K; Mahadevan S Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693 [TBL] [Abstract][Full Text] [Related]
14. Positive and negative regulation of the bgl operon in Escherichia coli. Mahadevan S; Reynolds AE; Wright A J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798 [TBL] [Abstract][Full Text] [Related]
15. Directed evolution of cellobiose utilization in Escherichia coli K12. Kricker M; Hall BG Mol Biol Evol; 1984 Feb; 1(2):171-82. PubMed ID: 6400650 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains. Neelakanta G; Sankar TS; Schnetz K Appl Environ Microbiol; 2009 Apr; 75(8):2284-93. PubMed ID: 19233952 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation. Gulati A; Mahadevan S Genes Cells; 2000 Apr; 5(4):239-50. PubMed ID: 10792463 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the beta-glucoside system in Escherchia coli K-12. Prasad I; Schaefler S J Bacteriol; 1974 Nov; 120(2):638-50. PubMed ID: 4616943 [TBL] [Abstract][Full Text] [Related]
19. Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Dole S; Kühn S; Schnetz K Mol Microbiol; 2002 Jan; 43(1):217-26. PubMed ID: 11849549 [TBL] [Abstract][Full Text] [Related]
20. The Escherichia coli antiterminator protein BglG stabilizes the 5'region of the bgl mRNA. Gulati A; Mahadevan S J Biosci; 2001 Jun; 26(2):193-203. PubMed ID: 11426055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]