These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1282941)

  • 1. Biphasic response to substance P in canine basilar arteries.
    Tsuji T; Cook DA
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S109-13. PubMed ID: 1282941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of acetylcholine-induced constriction enhanced by endothelial removal in isolated, perfused canine basilar arteries.
    Tsuji T; Cook DA
    J Cardiovasc Pharmacol; 1995 Jun; 25(6):940-6. PubMed ID: 7564339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasoconstrictor mechanism of neuropeptides augmented after endothelial removal in isolated, perfused canine basilar arteries.
    Tsuji T; Cook DA
    Neurol Res; 1995 Jun; 17(3):193-200. PubMed ID: 7543980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of endothelium removal by saponin and of oxyhemoglobin on canine cerebrovascular responses.
    Tsuji T; Kobayashi S; Chiba S; Cook DA
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S139-43. PubMed ID: 7836671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of thromboxane-mediated constriction due to neuropeptides in canine basilar artery.
    Tsuji T; Cook DA
    Eur J Pharmacol; 1994 Oct; 264(1):77-80. PubMed ID: 7828646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of thromboxane A2 in regulating porcine basilar arterial tone.
    Miyamoto A; Nakamoto T; Matsuoka Y; Ishiguro S; Nishio A
    J Vet Pharmacol Ther; 1998 Jun; 21(3):223-7. PubMed ID: 9673964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent effects of extraluminally-applied oxyhemoglobin and endothelial removal on vasodilator responses in isolated, perfused canine basilar arteries.
    Tsuji T; Weir BK; Cook DA
    Pharmacology; 1989; 38(2):101-12. PubMed ID: 2498911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of vascular responsiveness to barbiturates in isolated and perfused canine basilar arteries.
    Tsuji T; Chiba S
    Neurosurgery; 1987 Aug; 21(2):161-6. PubMed ID: 3658127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular responses to intraluminal acetylcholine in isolated, perfused canine and simian basilar arteries.
    Chiba S; Itoh N; Tsuji T
    J Auton Pharmacol; 1986 Jun; 6(2):101-7. PubMed ID: 3733767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasorelaxing effects of prostaglandin I2 on the canine basilar and coronary arteries.
    Shirahase H; Usui H; Manabe K; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1989 Feb; 248(2):769-73. PubMed ID: 2645398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the endothelium on extraluminal and intraluminal vasoactive mechanisms in the perfused rabbit basilar artery.
    Ogawa R; Ohta T; Tsuji M; Mori M
    Neurol Res; 1993 Jun; 15(3):154-9. PubMed ID: 8103580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between extraluminal oxyhemoglobin and endothelium-dependent vasodilatation in isolated perfused canine internal carotid arteries.
    Tanaka Y; Chiba S
    Neurosurgery; 1988 Aug; 23(2):158-61. PubMed ID: 3185874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent contraction induced by substance P in canine cerebral arteries: involvement of NK1 receptors and thromboxane A2.
    Shirahase H; Murase K; Kanda M; Kurahashi K; Nakamura S
    Life Sci; 1999; 64(3):211-9. PubMed ID: 10027752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of oxyhemoglobin on vasoconstriction in response to 5-hydroxytryptamine in isolated, perfused canine basilar arteries.
    Orz YI; Tsuji T; Aoki T; Yen Y; Chiba S; Kobayashi S
    Neurosurgery; 1998 Nov; 43(5):1176-84. PubMed ID: 9802861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries.
    Shirahase H; Usui H; Kurahashi K; Fujiwara M; Fukui K
    J Cardiovasc Pharmacol; 1987 Nov; 10(5):517-22. PubMed ID: 2447399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-dependent contraction produced by acetylcholine and relaxation produced by histamine in monkey basilar arteries.
    Usui H; Kurahashi K; Shirahase H; Jino H; Fujiwara M
    Life Sci; 1993; 52(4):377-87. PubMed ID: 8421436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasoconstrictor mechanism of 5-hydroxytryptamine in isolated and perfused canine basilar arteries.
    Tsuji T; Chiba S
    Arch Int Pharmacodyn Ther; 1987 Mar; 286(1):111-22. PubMed ID: 3592852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constrictor action of oxyhemoglobin in monkey and dog basilar arteries in vivo and in vitro.
    Toda N; Kawakami M; Yoshida K
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H420-5. PubMed ID: 1996685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of bradykinin B2-receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro.
    Miyamoto A; Ishiguro S; Nishio A
    Br J Pharmacol; 1999 Sep; 128(1):241-7. PubMed ID: 10498858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-independent and endothelium-dependent contractions mediated by P2X- and P2Y-purinoceptors in canine basilar arteries.
    Shirahase H; Usui H; Shimaji H; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1991 Feb; 256(2):683-8. PubMed ID: 1994001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.