These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12829482)

  • 1. Ion channels of alamethicin dimer N-terminally linked by disulfide bond.
    Okazaki T; Sakoh M; Nagaoka Y; Asami K
    Biophys J; 2003 Jul; 85(1):267-73. PubMed ID: 12829482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal insertion of alamethicin in channel formation studied using its covalent dimer N-terminally linked by disulfide bond.
    Sakoh M; Okazaki T; Nagaoka Y; Asami K
    Biochim Biophys Acta; 2003 May; 1612(1):117-21. PubMed ID: 12729937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7.
    Okazaki T; Nagaoka Y; Asami K
    Bioelectrochemistry; 2007 May; 70(2):380-6. PubMed ID: 16814617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer.
    Woolley GA; Biggin PC; Schultz A; Lien L; Jaikaran DC; Breed J; Crowhurst K; Sansom MS
    Biophys J; 1997 Aug; 73(2):770-8. PubMed ID: 9251793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Reversed" alamethicin conductance in lipid bilayers.
    Taylor RJ; de Levie R
    Biophys J; 1991 Apr; 59(4):873-9. PubMed ID: 1712238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering stabilized ion channels: covalent dimers of alamethicin.
    You S; Peng S; Lien L; Breed J; Sansom MS; Woolley GA
    Biochemistry; 1996 May; 35(20):6225-32. PubMed ID: 8639562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop.
    Taylor G; Nguyen MA; Koner S; Freeman E; Collier CP; Sarles SA
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):335-343. PubMed ID: 30006208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers.
    Saint N; Marri L; Marchini D; Molle G
    Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 2001 Jan; 80(1):331-46. PubMed ID: 11159406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
    Sansom MS; Tieleman DP; Berendsen HJ
    Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation.
    Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies of alamethicin-bilayer interactions.
    Biggin PC; Breed J; Son HS; Sansom MS
    Biophys J; 1997 Feb; 72(2 Pt 1):627-36. PubMed ID: 9017192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alamethicin-leucine zipper hybrid peptide: a prototype for the design of artificial receptors and ion channels.
    Futaki S; Fukuda M; Omote M; Yamauchi K; Yagami T; Niwa M; Sugiura Y
    J Am Chem Soc; 2001 Dec; 123(49):12127-34. PubMed ID: 11734010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminally shortened alamethicin on templates: influence of the linkers on conductances.
    Duclohier H; Kociolek K; Stasiak M; Leplawy MT; Marshall GR
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):14-22. PubMed ID: 10446286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.