BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12829484)

  • 41. Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels.
    Ionescu L; White C; Cheung KH; Shuai J; Parker I; Pearson JE; Foskett JK; Mak DO
    J Gen Physiol; 2007 Dec; 130(6):631-45. PubMed ID: 17998395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors.
    Adkins CE; Morris SA; De Smedt H; Sienaert I; Török K; Taylor CW
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):357-63. PubMed ID: 10620513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bi-directional signalling from the InsP3 receptor: regulation by calcium and accessory factors.
    Roderick HL; Bootman MD
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):950-3. PubMed ID: 14505456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The second messenger binding site of inositol 1,4,5-trisphosphate 3-kinase is centered in the catalytic domain and related to the inositol trisphosphate receptor site.
    Bertsch U; Deschermeier C; Fanick W; Girkontaite I; Hillemeier K; Johnen H; Weglöhner W; Emmrich F; Mayr GW
    J Biol Chem; 2000 Jan; 275(3):1557-64. PubMed ID: 10636844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of cerebellar Ins(1,4,5)P3 receptor by interaction between Ins(1,4,5)P3 and Ca2+.
    Coquil JF; Picard L; Mauger JP
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):697-704. PubMed ID: 10417334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones.
    Marchenko SM; Yarotskyy VV; Kovalenko TN; Kostyuk PG; Thomas RC
    J Physiol; 2005 Jun; 565(Pt 3):897-910. PubMed ID: 15774532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of intracellular calcium-release channels by calmodulin.
    Balshaw DM; Yamaguchi N; Meissner G
    J Membr Biol; 2002 Jan; 185(1):1-8. PubMed ID: 11891559
    [No Abstract]   [Full Text] [Related]  

  • 48. Functional coupling of chromogranin with the inositol 1,4,5-trisphosphate receptor shapes calcium signaling.
    Choe CU; Harrison KD; Grant W; Ehrlich BE
    J Biol Chem; 2004 Aug; 279(34):35551-6. PubMed ID: 15194698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction.
    Chorna-Ornan I; Joel-Almagor T; Ben-Ami HC; Frechter S; Gillo B; Selinger Z; Gill DL; Minke B
    J Neurosci; 2001 Apr; 21(8):2622-9. PubMed ID: 11306615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor.
    Michikawa T; Hirota J; Kawano S; Hiraoka M; Yamada M; Furuichi T; Mikoshiba K
    Neuron; 1999 Aug; 23(4):799-808. PubMed ID: 10482245
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural understanding of the transmembrane domains of inositol triphosphate receptors and ryanodine receptors towards calcium channeling.
    Shah PK; Sowdhamini R
    Protein Eng; 2001 Nov; 14(11):867-74. PubMed ID: 11742105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of Ca2+ oscillations by phosphorylation of Ins(1,4,5)P3 receptors.
    Yule DI; Straub SV; Bruce JI
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):954-7. PubMed ID: 14505457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [IP3 receptor and calcium signaling].
    Yamazaki H; Michikawa T; Mikoshiba K
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1212-9. PubMed ID: 16104587
    [No Abstract]   [Full Text] [Related]  

  • 54. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling.
    Eckenrode EF; Yang J; Velmurugan GV; Foskett JK; White C
    J Biol Chem; 2010 Apr; 285(18):13678-84. PubMed ID: 20189983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bridging the gaps in 3D structure of the inositol 1,4,5-trisphosphate receptor-binding core.
    Veresov VG; Konev SV
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1277-85. PubMed ID: 16469298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light at the end of the Ca(2+)-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels.
    Williams AJ; West DJ; Sitsapesan R
    Q Rev Biophys; 2001 Feb; 34(1):61-104. PubMed ID: 11388090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction.
    Bultynck G; Szlufcik K; Kasri NN; Assefa Z; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Biochem J; 2004 Jul; 381(Pt 1):87-96. PubMed ID: 15015936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor.
    Uchida K; Miyauchi H; Furuichi T; Michikawa T; Mikoshiba K
    J Biol Chem; 2003 May; 278(19):16551-60. PubMed ID: 12621039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of siRNA knock-down of TRPC6 and InsP(3)R1 in vasopressin-induced Ca(2+) oscillations of A7r5 vascular smooth muscle cells.
    Li M; Zacharia J; Sun X; Wier WG
    Pharmacol Res; 2008; 58(5-6):308-15. PubMed ID: 18835357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner.
    Hirota J; Furuichi T; Mikoshiba K
    J Biol Chem; 1999 Nov; 274(48):34433-7. PubMed ID: 10567423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.