BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12829513)

  • 21. Fluorescence and quantum mechanical approach on the interaction of amides and their role on the stability and coexistence of the rotamer conformations of L-tryptophan in aqueous solution.
    Kumaran R; Gayathri S; Augustine Arul Prasad T; Dhenadhayalan N; Keerthiga R; Sureka S; Jeevitha K; Karthick P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118791. PubMed ID: 32810781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-photon excitation of N-acetyl-L-tyrosinamide.
    Gryczynski I; Malak H; Lakowicz JR
    Biophys Chem; 1999 May; 79(1):25-32. PubMed ID: 10371019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan photophysics in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1994 Mar; 49(2):113-26. PubMed ID: 8155813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature Dependence of Tryptophan Fluorescence Lifetime in Aqueous Glycerol and Trehalose Solutions.
    Gorokhov VV; Knox PP; Korvatovskiy BN; Seifullina NK; Goryachev SN; Paschenko VZ
    Biochemistry (Mosc); 2017 Nov; 82(11):1269-1275. PubMed ID: 29223153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unfolding of ubiquitin studied by picosecond time-resolved fluorescence of the tyrosine residue.
    Noronha M; Lima JC; Bastos M; Santos H; Maçanita AL
    Biophys J; 2004 Oct; 87(4):2609-20. PubMed ID: 15454455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.
    Jia M; Yi H; Chang M; Cao X; Li L; Zhou Z; Pan H; Chen Y; Zhang S; Xu J
    J Photochem Photobiol B; 2015 Aug; 149():243-8. PubMed ID: 26111991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence properties of recombinant tropomyosin containing tryptophan, 5-hydroxytryptophan and 7-azatryptophan.
    Das K; Ashby KD; Smirnov AV; Reinach FC; Petrich JW; Farah CS
    Photochem Photobiol; 1999 Nov; 70(5):719-30. PubMed ID: 10568167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence of horse liver alcohol dehydrogenase using one- and two-photon excitation.
    Lakowicz JR; Kierdaszuk B; Gryczynski I; Malak H
    J Fluoresc; 1996 Mar; 6(1):51-9. PubMed ID: 24226997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.
    Albani JR
    J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes.
    Atkins WM; Villafranca JJ
    Protein Sci; 1992 Mar; 1(3):342-55. PubMed ID: 1363912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide sequence and conformation strongly influence tryptophan fluorescence.
    Alston RW; Lasagna M; Grimsley GR; Scholtz JM; Reinhart GD; Pace CN
    Biophys J; 2008 Mar; 94(6):2280-7. PubMed ID: 18065477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues.
    Chattopadhyay A; Mukherjee S; Rukmini R; Rawat SS; Sudha S
    Biophys J; 1997 Aug; 73(2):839-49. PubMed ID: 9251800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of solvents and leucine configuration at position 5 on tryptophan fluorescence in cyclic enkephalin analogues.
    Malicka J; Groth M; Karolczak J; Czaplewski C; Liwo A; Wiczk W
    Biopolymers; 2001 Apr; 58(4):447-57. PubMed ID: 11180057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin.
    Ross JB; Wyssbrod HR; Porter RA; Schwartz GP; Michaels CA; Laws WR
    Biochemistry; 1992 Feb; 31(6):1585-94. PubMed ID: 1737015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation.
    Lakowicz JR; Gryczynski I
    Biophys Chem; 1992 Nov; 45(1):1-6. PubMed ID: 1467440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.