BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 12829617)

  • 1. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase.
    Jain M; Cui L; Brenner DA; Wang B; Handy DE; Leopold JA; Loscalzo J; Apstein CS; Liao R
    Circulation; 2004 Feb; 109(7):898-903. PubMed ID: 14757696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages.
    Wilmanski J; Siddiqi M; Deitch EA; Spolarics Z
    J Leukoc Biol; 2005 Jul; 78(1):85-94. PubMed ID: 15817708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery.
    Préville X; Salvemini F; Giraud S; Chaufour S; Paul C; Stepien G; Ursini MV; Arrigo AP
    Exp Cell Res; 1999 Feb; 247(1):61-78. PubMed ID: 10047448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes.
    Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC
    Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide.
    Leopold JA; Zhang YY; Scribner AW; Stanton RC; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2003 Mar; 23(3):411-7. PubMed ID: 12615686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-oxidant effect of transforming growth factor- beta1 mediates contractile dysfunction in rat ventricular myocytes.
    Li S; Li X; Zheng H; Xie B; Bidasee KR; Rozanski GJ
    Cardiovasc Res; 2008 Jan; 77(1):107-17. PubMed ID: 18006470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress.
    Brenner DA; Jain M; Pimentel DR; Wang B; Connors LH; Skinner M; Apstein CS; Liao R
    Circ Res; 2004 Apr; 94(8):1008-10. PubMed ID: 15044325
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preeclampsia inactivates glucose-6-phosphate dehydrogenase and impairs the redox status of erythrocytes and fetal endothelial cells.
    Afzal-Ahmed I; Mann GE; Shennan AH; Poston L; Naftalin RJ
    Free Radic Biol Med; 2007 Jun; 42(12):1781-90. PubMed ID: 17512457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a possible risk factor for the development of preeclampsia.
    Abdulhadi NH
    Med Hypotheses; 2004; 62(5):780-2. PubMed ID: 15082106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways.
    Jung C; Martins AS; Niggli E; Shirokova N
    Cardiovasc Res; 2008 Mar; 77(4):766-73. PubMed ID: 18056762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes.
    Smart N; Mojet MH; Latchman DS; Marber MS; Duchen MR; Heads RJ
    Cardiovasc Res; 2006 Jan; 69(1):164-77. PubMed ID: 16219301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes.
    Xu FP; Chen MS; Wang YZ; Yi Q; Lin SB; Chen AF; Luo JD
    Circulation; 2004 Sep; 110(10):1269-75. PubMed ID: 15313952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations of the redox state, pentose pathway and glutathione metabolism in an acute porphyria model. Their impact on heme pathway.
    Faut M; Paiz A; San Martín de Viale LC; Mazzetti MB
    Exp Biol Med (Maywood); 2013 Feb; 238(2):133-43. PubMed ID: 23390166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-6-phosphate-dehydrogenase deficiency as a risk factor for pterygium.
    Peiretti E; Mandas A; Cocco P; Norfo C; Abete C; Angius F; Pani A; Vascellari S; Del Fiacco G; Cannas D; Diaz G; Dessì S; Fossarello M
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):2928-35. PubMed ID: 20484601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.