BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12829696)

  • 1. The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c1 and bH in the bc1 complex.
    Crofts AR; Shinkarev VP; Kolling DR; Hong S
    J Biol Chem; 2003 Sep; 278(38):36191-201. PubMed ID: 12829696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
    Shinkarev VP; Kolling DR; Miller TJ; Crofts AR
    Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of quinol oxidation at the QP site in the cytochrome bc1 complex: studied using mutants lacking cytochrome bL or bH.
    Yang S; Ma HW; Yu L; Yu CA
    J Biol Chem; 2008 Oct; 283(42):28767-76. PubMed ID: 18713733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the pattern of proton release from partial process involved in ubihydroquinone oxidation in the Q-cycle.
    Wilson CA; Crofts AR
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):531-543. PubMed ID: 29625088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QO site deficiency can be compensated by extragenic mutations in the hinge region of the iron-sulfur protein in the bc1 complex of Saccharomyces cerevisiae.
    Brasseur G; Lemesle-Meunier D; Reinaud F; Meunier B
    J Biol Chem; 2004 Jun; 279(23):24203-11. PubMed ID: 15039445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model.
    Orii Y; Miki T
    J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and use of photoactive ruthenium complexes to study electron transfer within cytochrome bc1 and from cytochrome bc1 to cytochrome c.
    Millett F; Havens J; Rajagukguk S; Durham B
    Biochim Biophys Acta; 2013; 1827(11-12):1309-19. PubMed ID: 22985600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of engineered intersubunit disulfide bond in cytochrome bc1 complex disrupts electron transfer activity in the complex.
    Ma HW; Yang S; Yu L; Yu CA
    Biochim Biophys Acta; 2008 Mar; 1777(3):317-26. PubMed ID: 18258178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutations of conserved residues of the Rieske iron-sulfur subunit of the cytochrome bc1 complex of Rhodobacter sphaeroides blocking or impairing quinol oxidation.
    Van Doren SR; Gennis RB; Barquera B; Crofts AR
    Biochemistry; 1993 Aug; 32(32):8083-91. PubMed ID: 8394124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mutations in the cytochrome b ef loop on the electron-transfer reactions of the Rieske iron-sulfur protein in the cytochrome bc1 complex.
    Rajagukguk S; Yang S; Yu CA; Yu L; Durham B; Millett F
    Biochemistry; 2007 Feb; 46(7):1791-8. PubMed ID: 17253777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and spectral analysis of the long-range interactions between the Qo and Qi sites and the heme prosthetic groups in ubiquinol-cytochrome c oxidoreductase.
    Howell N; Robertson DE
    Biochemistry; 1993 Oct; 32(41):11162-72. PubMed ID: 8218179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation.
    Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL
    J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria.
    Crofts AR; Hong S; Zhang Z; Berry EA
    Biochemistry; 1999 Nov; 38(48):15827-39. PubMed ID: 10625447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex.
    Covian R; Trumpower BL
    J Biol Chem; 2006 Oct; 281(41):30925-32. PubMed ID: 16908520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodobacter capsulatus mutants lacking the Rieske FeS protein form a stable cytochrome bc1 subcomplex with an intact quinone reduction site.
    Davidson E; Ohnishi T; Tokito M; Daldal F
    Biochemistry; 1992 Apr; 31(13):3351-8. PubMed ID: 1313293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the head domain movement of the rieske iron-sulfur protein in electron transfer reaction of the cytochrome bc1 complex.
    Tian H; White S; Yu L; Yu CA
    J Biol Chem; 1999 Mar; 274(11):7146-52. PubMed ID: 10066773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer by domain movement in cytochrome bc1.
    Zhang Z; Huang L; Shulmeister VM; Chi YI; Kim KK; Hung LW; Crofts AR; Berry EA; Kim SH
    Nature; 1998 Apr; 392(6677):677-84. PubMed ID: 9565029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electric field generated by photosynthetic reaction center induces rapid reversed electron transfer in the bc1 complex.
    Shinkarev VP; Crofts AR; Wraight CA
    Biochemistry; 2001 Oct; 40(42):12584-90. PubMed ID: 11601982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation.
    Gille L; Nohl H
    Arch Biochem Biophys; 2001 Apr; 388(1):34-8. PubMed ID: 11361137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.