These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12829777)

  • 1. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons.
    Huber GW; Shabaker JW; Dumesic JA
    Science; 2003 Jun; 300(5628):2075-7. PubMed ID: 12829777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of O-H and C-H bond scission mechanisms of ethylene glycol on Pt and Ni/Pt using theory and isotopic labeling experiments.
    Salciccioli M; Yu W; Barteau MA; Chen JG; Vlachos DG
    J Am Chem Soc; 2011 May; 133(20):7996-8004. PubMed ID: 21526776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst.
    Nikolla E; Holewinski A; Schwank J; Linic S
    J Am Chem Soc; 2006 Sep; 128(35):11354-5. PubMed ID: 16939249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of syngas from biomass-derived glycerol by steam reforming over highly stable Ni/SiC.
    Kim SM; Woo SI
    ChemSusChem; 2012 Aug; 5(8):1513-22. PubMed ID: 22753307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous phase hydrogenolysis of glycerol to bio-propylene glycol over Pt-Sn catalysts.
    Barbelli ML; Santori GF; Nichio NN
    Bioresour Technol; 2012 May; 111():500-3. PubMed ID: 22386627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni-Sn alloy catalysts.
    Rodiansono ; Astuti MD; Mustikasari K; Husain S; Ansyah FR; Hara T; Shimazu S
    RSC Adv; 2021 Dec; 12(1):241-250. PubMed ID: 35424491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reforming of oxygenates for H2 production: correlating reactivity of ethylene glycol and ethanol on Pt(111) and Ni/Pt(111) with surface d-band center.
    Skoplyak O; Barteau MA; Chen JG
    J Phys Chem B; 2006 Feb; 110(4):1686-94. PubMed ID: 16471734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel microfibrous composite bed reactor: high efficiency H2 production from NH3 with potential for portable fuel cell power supplies.
    Lu Y; Wang H; Liu Y; Xue Q; Chen L; He M
    Lab Chip; 2007 Jan; 7(1):133-40. PubMed ID: 17180216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst screening for oxidative reforming of methane in direct route using high pressure HTS reactor with syngas detection system by colorimetric reaction and gas chromatograph.
    Omata K; Ishii H; Horiguchi J; Kobayashi S; Yamazaki Y; Yamada M
    J Comb Chem; 2009; 11(1):169-74. PubMed ID: 19133839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.
    Chen CL; Wang CH; Weng HS
    Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Chem Commun (Camb); 2010 Jan; 46(3):412-4. PubMed ID: 20066309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic investigation of the polymerization of ethylene catalyzed by neutral Ni(II) complexes derived from bulky anilinotropone ligands.
    Jenkins JC; Brookhart M
    J Am Chem Soc; 2004 May; 126(18):5827-42. PubMed ID: 15125675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative X-ray photoelectron spectroscopic study on the desulfurization of thiophene by Raney nickel and rapidly quenched skeletal nickel.
    Hu H; Qiao M; Xie F; Fan K; Lei H; Tan D; Bao X; Lin H; Zong B; Zhang X
    J Phys Chem B; 2005 Mar; 109(11):5186-92. PubMed ID: 16863183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroliquefaction of green wastes to produce fuels.
    Beauchet R; Pinard L; Kpogbemabou D; Laduranty J; Lemee L; Lemberton JL; Bataille F; Magnoux P; Ambles A; Barbier J
    Bioresour Technol; 2011 May; 102(10):6200-7. PubMed ID: 21377355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts.
    Ren H; Yu W; Salciccioli M; Chen Y; Huang Y; Xiong K; Vlachos DG; Chen JG
    ChemSusChem; 2013 May; 6(5):798-801. PubMed ID: 23559531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.