BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12830345)

  • 1. Differential contributions of vision and proprioception to movement accuracy.
    Lateiner JE; Sainburg RL
    Exp Brain Res; 2003 Aug; 151(4):446-54. PubMed ID: 12830345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential influence of vision and proprioception on control of movement distance.
    Bagesteiro LB; Sarlegna FR; Sainburg RL
    Exp Brain Res; 2006 May; 171(3):358-70. PubMed ID: 16307242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of target modality on visual and proprioceptive contributions to the control of movement distance.
    Sarlegna FR; Sainburg RL
    Exp Brain Res; 2007 Jan; 176(2):267-80. PubMed ID: 16896981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of altering initial position on movement direction and extent.
    Sainburg RL; Lateiner JE; Latash ML; Bagesteiro LB
    J Neurophysiol; 2003 Jan; 89(1):401-15. PubMed ID: 12522189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vectorial coding of movement: vision, proprioception, or both?
    Rossetti Y; Desmurget M; Prablanc C
    J Neurophysiol; 1995 Jul; 74(1):457-63. PubMed ID: 7472347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is proprioception calibrated during visually guided movements?
    Bernier PM; Chua R; Franks IM
    Exp Brain Res; 2005 Nov; 167(2):292-6. PubMed ID: 16044301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of vision and proprioception to arm movement planning in the vertical plane.
    Apker GA; Karimi CP; Buneo CA
    Neurosci Lett; 2011 Oct; 503(3):186-90. PubMed ID: 21889576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reach endpoint errors do not vary with movement path of the proprioceptive target.
    Jones SA; Byrne PA; Fiehler K; Henriques DY
    J Neurophysiol; 2012 Jun; 107(12):3316-24. PubMed ID: 22402658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congruent visual and proprioceptive information results in a better encoding of initial hand position.
    Veilleux LN; Proteau L
    Exp Brain Res; 2011 Oct; 214(2):215-24. PubMed ID: 21837439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Untangling visual and proprioceptive contributions to hand localisation over time.
    Bellan V; Gilpin HR; Stanton TR; Newport R; Gallace A; Moseley GL
    Exp Brain Res; 2015 Jun; 233(6):1689-701. PubMed ID: 25757958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proprioception does not quickly drift during visual occlusion.
    Desmurget M; Vindras P; Gréa H; Viviani P; Grafton ST
    Exp Brain Res; 2000 Oct; 134(3):363-77. PubMed ID: 11045361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limb position drift results from misalignment of proprioceptive and visual maps.
    Patterson JR; Brown LE; Wagstaff DA; Sainburg RL
    Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experiencing the Cross-Sensory Error Signal During Movement Leads to Proprioceptive Recalibration.
    Maksimovic S; Neville KM; Cressman EK
    J Mot Behav; 2020; 52(1):122-129. PubMed ID: 30761949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor adaptation and proprioceptive recalibration.
    Cressman EK; Henriques DY
    Prog Brain Res; 2011; 191():91-9. PubMed ID: 21741546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prism adaptation of reaching is dependent on the type of visual feedback of hand and target position.
    Norris SA; Greger BE; Martin TA; Thach WT
    Brain Res; 2001 Jun; 905(1-2):207-19. PubMed ID: 11423096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.