BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12830910)

  • 1. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography.
    Fahey JW; Wade KL; Stephenson KK; Chou FE
    J Chromatogr A; 2003 May; 996(1-2):85-93. PubMed ID: 12830910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous extraction and separation of oil, proteins, and glucosinolates from Moringa oleifera seeds.
    Chen R; Wang XJ; Zhang YY; Xing Y; Yang L; Ni H; Li HH
    Food Chem; 2019 Dec; 300():125162. PubMed ID: 31325745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.
    Förster N; Ulrichs C; Schreiner M; Müller CT; Mewis I
    Food Chem; 2015 Jan; 166():456-464. PubMed ID: 25053080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.
    Wade KL; Ito Y; Ramarathnam A; Holtzclaw WD; Fahey JW
    Phytochem Anal; 2015; 26(1):47-53. PubMed ID: 25130502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L.
    Bennett RN; Mellon FA; Foidl N; Pratt JH; Dupont MS; Perkins L; Kroon PA
    J Agric Food Chem; 2003 Jun; 51(12):3546-53. PubMed ID: 12769522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal.
    Liang H; Li C; Yuan Q; Vriesekoop F
    J Agric Food Chem; 2008 Sep; 56(17):7746-9. PubMed ID: 18690688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isolation and purification of glucoraphanin from broccoli seeds by solid phase extraction and preparative high performance liquid chromatography.
    Rochfort S; Caridi D; Stinton M; Trenerry VC; Jones R
    J Chromatogr A; 2006 Jul; 1120(1-2):205-10. PubMed ID: 16457830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single column approach for the liquid chromatographic separation of polar and non-polar glucosinolates from broccoli sprouts and seeds.
    West L; Tsui I; Haas G
    J Chromatogr A; 2002 Aug; 966(1-2):227-32. PubMed ID: 12214698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography.
    Kuang P; Song D; Yuan Q; Lv X; Zhao D; Liang H
    Food Chem; 2013 Jan; 136(2):309-15. PubMed ID: 23122063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong ion-exchange centrifugal partition chromatography as an efficient method for the large-scale purification of glucosinolates.
    Toribio A; Nuzillard JM; Renault JH
    J Chromatogr A; 2007 Nov; 1170(1-2):44-51. PubMed ID: 17904564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry.
    Bennett RN; Mellon FA; Kroon PA
    J Agric Food Chem; 2004 Feb; 52(3):428-38. PubMed ID: 14759128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparative purification of morroniside and loganin from Fructus corni by combination of macroporous absorption resin and HSCCC.
    Liu L; Sun A; Wu S; Liu R
    J Chromatogr Sci; 2009; 47(5):333-6. PubMed ID: 19476697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucosinolates in Moringa stenopetala.
    Mekonnen Y; Dräger B
    Planta Med; 2003 Apr; 69(4):380-2. PubMed ID: 12709911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive chromatographic and spectroscopic methods for the separation and identification of intact glucosinolates.
    Prestera T; Fahey JW; Holtzclaw WD; Abeygunawardana C; Kachinski JL; Talalay P
    Anal Biochem; 1996 Aug; 239(2):168-79. PubMed ID: 8811902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparative isolation and purification of phillyrin from the medicinal plant Forsythia suspensa by high-speed counter-current chromatography.
    Li HB; Chen F
    J Chromatogr A; 2005 Aug; 1083(1-2):102-5. PubMed ID: 16078694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparative separation and purification of liensinine, isoliensinine and neferine from seed embryo of Nelumbo nucifera GAERTN using high-speed counter-current chromatography.
    Liu S; Wang B; Li XZ; Qi LF; Liang YZ
    J Sep Sci; 2009 Jul; 32(14):2476-81. PubMed ID: 19557808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry.
    Cataldi TR; Rubino A; Lelario F; Bufo SA
    Rapid Commun Mass Spectrom; 2007; 21(14):2374-88. PubMed ID: 17590871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of analytical and preparative high-speed counter-current chromatography for separation of lycopene from crude extract of tomato paste.
    Wei Y; Zhang T; Xu G; Ito Y
    J Chromatogr A; 2001 Sep; 929(1-2):169-73. PubMed ID: 11594399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucosinolates in wild and cultivated
    Montaut S; Read S; Marquis F; Bizard L; Rollin P
    Nat Prod Res; 2020 Apr; 34(8):1163-1166. PubMed ID: 30663352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Separation and purification of the main glucosinolate from rapeseeds].
    Zhou J; Hu J; Qiu A
    Se Pu; 2005 Jul; 23(4):411-4. PubMed ID: 16250455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.