These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12830939)

  • 21. Applying fluorescence based technology to the recovery and isolation of Cryptosporidium and Giardia from industrial wastewater streams.
    Ferrari BC; Stoner K; Bergquist PL
    Water Res; 2006 Feb; 40(3):541-8. PubMed ID: 16426657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration.
    Emelko MB
    Water Res; 2003 Jul; 37(12):2998-3008. PubMed ID: 12767303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse media filtration--an alternative to settling in wastewater treatment.
    Odegaard H; Liao Z; Hansen AT
    Water Sci Technol; 2003; 47(12):81-8. PubMed ID: 12926673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of estrogenicity in Swedish municipal sewage treatment plants.
    Svenson A; Allard AS; Ek M
    Water Res; 2003 Nov; 37(18):4433-43. PubMed ID: 14511714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of treated wastewater to the microbiological quality of Seine River in Paris.
    Moulin L; Richard F; Stefania S; Goulet M; Gosselin S; Gonçalves A; Rocher V; Paffoni C; Dumètre A
    Water Res; 2010 Oct; 44(18):5222-31. PubMed ID: 20630555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protozoan predation as a mechanism for the removal of cryptosporidium oocysts from wastewaters in constructed wetlands.
    Stott R; May E; Matsushita E; Warren A
    Water Sci Technol; 2001; 44(11-12):191-8. PubMed ID: 11804094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct and indirect QMRA of infectious Cryptosporidium oocysts in reclaimed water.
    Agulló-Barceló M; Casas-Mangas R; Lucena F
    J Water Health; 2012 Dec; 10(4):539-48. PubMed ID: 23165711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants.
    Wen Q; Tutuka C; Keegan A; Jin B
    J Environ Manage; 2009 Mar; 90(3):1442-7. PubMed ID: 18977580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pathogen concentrations on removal of Cryptosporidium and Giardia by conventional drinking water treatment.
    Assavasilavasukul P; Lau BL; Harrington GW; Hoffman RM; Borchardt MA
    Water Res; 2008 May; 42(10-11):2678-90. PubMed ID: 18313095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano silica removal from IC wastewater by pre-coagulation and microfiltration.
    Huang C; Jiang W; Chen C
    Water Sci Technol; 2004; 50(12):133-8. PubMed ID: 15686013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pilot-testing an alternative on-site wastewater treatment system for small communities and its automatic control.
    Hong SW; Choi YS; Kim SJ; Kwon G
    Water Sci Technol; 2005; 51(10):101-8. PubMed ID: 16104411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryptosporidium monitoring system at a water treatment plant, based on waterborne risk assessment.
    Masago Y; Oguma K; Katayama H; Hirata T; Ohgaki S
    Water Sci Technol; 2004; 50(1):293-9. PubMed ID: 15318525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of Cryptosporidium by wastewater treatment processes: a review.
    Nasser AM
    J Water Health; 2016 Feb; 14(1):1-13. PubMed ID: 26837825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation.
    Hutnan M; Drtil M; Kalina A
    J Hazard Mater; 2006 Apr; 131(1-3):163-9. PubMed ID: 16297548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes.
    Plattes M; Bertrand A; Schmitt B; Sinner J; Verstraeten F; Welfring J
    J Hazard Mater; 2007 Sep; 148(3):613-5. PubMed ID: 17420093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan.
    Okuda T; Kobayashi Y; Nagao R; Yamashita N; Tanaka H; Tanaka S; Fujii S; Konishi C; Houwa I
    Water Sci Technol; 2008; 57(1):65-71. PubMed ID: 18192742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What to do after nutrient removal?
    van der Graaf JH
    Water Sci Technol; 2001; 44(1):129-35. PubMed ID: 11496663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain.
    Carmena D; Aguinagalde X; Zigorraga C; Fernández-Crespo JC; Ocio JA
    J Appl Microbiol; 2007 Mar; 102(3):619-29. PubMed ID: 17309610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wastewater reuse in on-site wastewater treatment: bacteria and virus movement in unsaturated flow through sand filter.
    Sélas B; Lakel A; Andres Y; Le Cloirec P
    Water Sci Technol; 2003; 47(1):59-64. PubMed ID: 12578174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of MBR effluent characteristics for reuse purposes.
    Oota S; Murakami T; Takemura K; Noto K
    Water Sci Technol; 2005; 51(6-7):441-6. PubMed ID: 16004006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.