BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 12831052)

  • 1. Comment on "Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution".
    Lutes CC; Liles DS; Suthersan SS; Lenzo F; Hansen M; Payne FC; Burdick JV; Vance D
    Environ Sci Technol; 2003 Jun; 37(11):2618-9; author reply 2620-1. PubMed ID: 12831052
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution.
    Yang Y; McCarty PL
    Environ Sci Technol; 2002 Aug; 36(15):3400-4. PubMed ID: 12188371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology.
    Glover KC; Munakata-Marr J; Illangasekare TH
    Environ Sci Technol; 2007 Feb; 41(4):1384-9. PubMed ID: 17593746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation.
    Chu M; Kitanidis PK; McCarty PL
    J Contam Hydrol; 2003 Aug; 65(1-2):79-100. PubMed ID: 12855202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid.
    Philips J; Springael D; Smolders E
    Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene.
    Maymó-Gatell X; Chien Y; Gossett JM; Zinder SH
    Science; 1997 Jun; 276(5318):1568-71. PubMed ID: 9171062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.
    Cápiro NL; Löffler FE; Pennell KD
    J Contam Hydrol; 2015 Nov; 182():78-90. PubMed ID: 26348832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breathing with chlorinated solvents.
    McCarty PL
    Science; 1997 Jun; 276(5318):1521-2. PubMed ID: 9190688
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: a flux-based analysis using diffusion-cells.
    Philips J; Van Muylder R; Springael D; Smolders E
    Chemosphere; 2013 Mar; 91(1):7-13. PubMed ID: 23228910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2.
    Hiortdahl KM; Borden RC
    Environ Sci Technol; 2014; 48(1):624-31. PubMed ID: 24328264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater.
    Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS
    Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations.
    Huang D; Becker JG
    Environ Sci Technol; 2011 Feb; 45(3):1093-9. PubMed ID: 21182287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation.
    Vieth A; Müller J; Strauch G; Kästner M; Gehre M; Meckenstock RU; Richnow HH
    Isotopes Environ Health Stud; 2003 Jun; 39(2):113-24. PubMed ID: 12872803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis.
    Chen M; Abriola LM; Amos BK; Suchomel EJ; Pennell KD; Löffler FE; Christ JA
    J Contam Hydrol; 2013 Aug; 151():117-30. PubMed ID: 23774611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental things apply: the case of Dehalococcoides ethenogenes.
    Maymó-Gatell X
    Int Microbiol; 2005 Jun; 8(2):137-40. PubMed ID: 16052463
    [No Abstract]   [Full Text] [Related]  

  • 18. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
    Haest PJ; Springael D; Seuntjens P; Smolders E
    Chemosphere; 2012 Nov; 89(11):1369-75. PubMed ID: 22749126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.
    Philips J; Maes N; Springael D; Smolders E
    J Contam Hydrol; 2013 Apr; 147():25-33. PubMed ID: 23500838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE; Towne RM; Vainberg S; McCray JE; Steffan RJ
    Environ Sci Technol; 2010 Jul; 44(13):4958-64. PubMed ID: 20524648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.