These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12831480)

  • 1. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations.
    Rieseberg LH; Widmer A; Arntz AM; Burke JM
    Philos Trans R Soc Lond B Biol Sci; 2003 Jun; 358(1434):1141-7. PubMed ID: 12831480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgressive segregation, adaptation and speciation.
    Rieseberg LH; Archer MA; Wayne RK
    Heredity (Edinb); 1999 Oct; 83 ( Pt 4)():363-72. PubMed ID: 10583537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic distance between species predicts novel trait expression in their hybrids.
    Stelkens R; Seehausen O
    Evolution; 2009 Apr; 63(4):884-97. PubMed ID: 19220450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL analysis of transgressive segregation in an interspecific tomato cross.
    deVicente MC; Tanksley SD
    Genetics; 1993 Jun; 134(2):585-96. PubMed ID: 8100788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice.
    Koide Y; Sakaguchi S; Uchiyama T; Ota Y; Tezuka A; Nagano AJ; Ishiguro S; Takamure I; Kishima Y
    G3 (Bethesda); 2019 May; 9(5):1655-1662. PubMed ID: 30894452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL analysis of floral traits in Louisiana iris hybrids.
    Bouck A; Wessler SR; Arnold ML
    Evolution; 2007 Oct; 61(10):2308-19. PubMed ID: 17725637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses.
    Stelkens RB; Brockhurst MA; Hurst GD; Miller EL; Greig D
    J Evol Biol; 2014 Nov; 27(11):2507-19. PubMed ID: 25262771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic architecture sets limits on transgressive segregation in hybrid cichlid fishes.
    Albertson RC; Kocher TD
    Evolution; 2005 Mar; 59(3):686-90. PubMed ID: 15856710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Crosses Between Two Dung Beetle Lineages Show Transgressive Segregation in Physiological Traits.
    Armas F; Favila ME; González-Tokman D; Salomão RP; Baena-Díaz F
    Neotrop Entomol; 2023 Jun; 52(3):442-451. PubMed ID: 36897325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat.
    Lexer C; Welch ME; Raymond O; Rieseberg LH
    Evolution; 2003 Sep; 57(9):1989-2000. PubMed ID: 14575321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids.
    Feller AF; Selz OM; McGee MD; Meier JI; Mwaiko S; Seehausen O
    Ecol Evol; 2020 Jul; 10(14):7445-7462. PubMed ID: 32760540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological novelty by hybridization: experimental evidence for increased thermal tolerance by transgressive segregation in Tigriopus californicus.
    Pereira RJ; Barreto FS; Burton RS
    Evolution; 2014 Jan; 68(1):204-15. PubMed ID: 24372605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species.
    Lexer C; Welch ME; Durphy JL; Rieseberg LH
    Mol Ecol; 2003 May; 12(5):1225-35. PubMed ID: 12694286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).
    Durkovic J; Kardosová M; Canová I; Lagana R; Priwitzer T; Chorvát D; Cicák A; Pichler V
    Am J Bot; 2012 Sep; 99(9):1489-500. PubMed ID: 22922399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization, recombination, and the genetic basis of fitness variation across environments in Avena barbata.
    Latta RG; Gardner KM; Johansen-Morris AD
    Genetica; 2007 Feb; 129(2):167-77. PubMed ID: 17006737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgressive segregation in mating traits drives hybrid speciation.
    Kagawa K; Takimoto G; Seehausen O
    Evolution; 2023 Jun; 77(7):1622-1633. PubMed ID: 37094817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization can promote adaptive radiation by means of transgressive segregation.
    Kagawa K; Takimoto G
    Ecol Lett; 2018 Feb; 21(2):264-274. PubMed ID: 29243294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats.
    Verhoeven KJ; Vanhala TK; Biere A; Nevo E; van Damme JM
    Evolution; 2004 Feb; 58(2):270-83. PubMed ID: 15068345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane.
    Ming R; Wang W; Draye X; Moore H; Irvine E; Paterson H
    Theor Appl Genet; 2002 Aug; 105(2-3):332-345. PubMed ID: 12582536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of homoploid hybridization in evolution: a century of studies synthesizing genetics and ecology.
    Yakimowski SB; Rieseberg LH
    Am J Bot; 2014 Aug; 101(8):1247-58. PubMed ID: 25156978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.