These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12831735)

  • 41. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution, development and morphology of microcracking in cortical bone during crack propagation.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2000 Sep; 33(9):1169-74. PubMed ID: 10854892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The fatigue resistance of rabbit tibiae varies with age from youth to middle age.
    Willett TL; Wynnyckyj C; Wang J; Grynpas MD
    Osteoporos Int; 2011 Apr; 22(4):1157-65. PubMed ID: 20495904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress intensity variations in bone microcracks during the repair process.
    Taylor D; Tilmans A
    J Theor Biol; 2004 Jul; 229(2):169-77. PubMed ID: 15207472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Similarity in the fatigue behavior of trabecular bone across site and species.
    Haddock SM; Yeh OC; Mummaneni PV; Rosenberg WS; Keaveny TM
    J Biomech; 2004 Feb; 37(2):181-7. PubMed ID: 14706320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth.
    Akkus O; Rimnac CM
    J Biomech; 2001 Jun; 34(6):757-64. PubMed ID: 11470113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans.
    Fyhrie DP; Milgrom C; Hoshaw SJ; Simkin A; Dar S; Drumb D; Burr DB
    Ann Biomed Eng; 1998; 26(4):660-5. PubMed ID: 9662157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microdamage accumulation in bovine trabecular bone in uniaxial compression.
    Arthur Moore TL; Gibson LJ
    J Biomech Eng; 2002 Feb; 124(1):63-71. PubMed ID: 11873773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples.
    Cotton JR; Winwood K; Zioupos P; Taylor M
    J Biomech Eng; 2005 Apr; 127(2):213-9. PubMed ID: 15971698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural consequences of transcortical holes in long bones loaded in torsion.
    Hipp JA; Edgerton BC; An KN; Hayes WC
    J Biomech; 1990; 23(12):1261-8. PubMed ID: 2292605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of microcrack lengths in bone in vivo and in vitro.
    Presbitero G; O'Brien FJ; Lee TC; Taylor D
    J Theor Biol; 2012 Jul; 304():164-71. PubMed ID: 22498804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical analysis of bone adaptation around an oral implant due to overload stress.
    Crupi V; Guglielmino E; La Rosa G; Vander Sloten J; Van Oosterwyck H
    Proc Inst Mech Eng H; 2004; 218(6):407-15. PubMed ID: 15648664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatigue damage, remodeling, and the minimization of skeletal weight.
    Martin RB
    J Theor Biol; 2003 Jan; 220(2):271-6. PubMed ID: 12602399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fracture mechanics of bone with short cracks.
    Lakes RS; Nakamura S; Behiri JC; Bonfield W
    J Biomech; 1990; 23(10):967-75. PubMed ID: 2229094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.
    Müller R; Gerber SC; Hayes WC
    Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.