These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12831761)
1. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Kostál V; Berková P; Simek P Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):407-19. PubMed ID: 12831761 [TBL] [Abstract][Full Text] [Related]
2. Insect fat body cell morphology and response to cold stress is modulated by acclimation. Des Marteaux LE; Štětina T; Koštál V J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30190314 [TBL] [Abstract][Full Text] [Related]
3. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Kostál V; Zahradnícková H; Šimek P Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482 [TBL] [Abstract][Full Text] [Related]
4. Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae). Vukašinović EL; Pond DW; Worland MR; Kojić D; Purać J; Popović ŽD; Grubor-Lajšić G Comp Biochem Physiol B Biochem Mol Biol; 2015 Jun; 184():36-43. PubMed ID: 25724263 [TBL] [Abstract][Full Text] [Related]
5. Dopamine and serotonin in the larval CNS of a drosophilid fly, Chymomyza costata: are they involved in the regulation of diapause? Kostal V; Noguchi H; Shimada K; Hayakawa Y Arch Insect Biochem Physiol; 1999 Oct; 42(2):147-62. PubMed ID: 10504208 [TBL] [Abstract][Full Text] [Related]
6. Cell cycle arrest as a hallmark of insect diapause: changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Kostál V; Simůnková P; Kobelková A; Shimada K Insect Biochem Mol Biol; 2009 Dec; 39(12):875-83. PubMed ID: 19879357 [TBL] [Abstract][Full Text] [Related]
7. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. Poupardin R; Schöttner K; Korbelová J; Provazník J; Doležel D; Pavlinic D; Beneš V; Koštál V BMC Genomics; 2015 Sep; 16():720. PubMed ID: 26391666 [TBL] [Abstract][Full Text] [Related]
8. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. Izumi Y; Sonoda S; Tsumuki H J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330 [TBL] [Abstract][Full Text] [Related]
9. Insect mitochondria as targets of freezing-induced injury. Štětina T; Des Marteaux LE; Koštál V Proc Biol Sci; 2020 Jul; 287(1931):20201273. PubMed ID: 32693722 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional analysis of insect extreme freeze tolerance. Des Marteaux LE; Hůla P; Koštál V Proc Biol Sci; 2019 Oct; 286(1913):20192019. PubMed ID: 31640516 [TBL] [Abstract][Full Text] [Related]
11. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: comparison between wild-type and mutant-nondiapause strains. Hayakawa Y; Shimada K; Noguchi H; Kostal V J Insect Physiol; 1998 Jul; 44(7-8):605-614. PubMed ID: 12769943 [TBL] [Abstract][Full Text] [Related]
12. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. Rozsypal J; Moos M; Šimek P; Koštál V J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29496781 [TBL] [Abstract][Full Text] [Related]
13. Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement. Hůla P; Moos M; Des Marteaux L; Šimek P; Koštál V Proc Biol Sci; 2022 Jun; 289(1976):20220308. PubMed ID: 35673862 [TBL] [Abstract][Full Text] [Related]
14. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Koštál V; Štětina T; Poupardin R; Korbelová J; Bruce AW Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8532-8537. PubMed ID: 28720705 [TBL] [Abstract][Full Text] [Related]
15. Fat body disintegration after freezing stress is a consequence rather than a cause of freezing injury in larvae of Drosophila melanogaster. Rozsypal J; Toxopeus J; Berková P; Moos M; Šimek P; Koštál V J Insect Physiol; 2019; 115():12-19. PubMed ID: 30928312 [TBL] [Abstract][Full Text] [Related]
16. Diapause and Cold Hardiness of the Almond Wasp, Eurytoma amygdali (Hymenoptera: Eurytomidae), Two Independent Phenomena. Khanmohamadi F; Khajehali J; Izadi H J Econ Entomol; 2016 Aug; 109(4):1646-50. PubMed ID: 27354509 [TBL] [Abstract][Full Text] [Related]
17. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. Rozsypal J; Koštál V; Berková P; Zahradníčková H; Simek P J Therm Biol; 2014 Oct; 45():124-33. PubMed ID: 25436961 [TBL] [Abstract][Full Text] [Related]
18. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. Stehlík J; Závodská R; Shimada K; Sauman I; Kostál V J Biol Rhythms; 2008 Apr; 23(2):129-39. PubMed ID: 18375862 [TBL] [Abstract][Full Text] [Related]
19. Temperature adaptation of lipids in diapausing Ostrinia nubilalis: an experimental study to distinguish environmental versus endogenous controls. Vukašinović EL; Pond DW; Grubor-Lajšić G; Worland MR; Kojić D; Purać J; Popović ŽD; Blagojević DP J Comp Physiol B; 2018 Jan; 188(1):27-36. PubMed ID: 28573529 [TBL] [Abstract][Full Text] [Related]
20. Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Tomcala A; Tollarová M; Overgaard J; Simek P; Kostál V J Exp Biol; 2006 Oct; 209(Pt 20):4102-14. PubMed ID: 17023604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]