These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12831884)

  • 21. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; Kraevskiĭ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid peptide bond formation on isolated 50S ribosomal subunits.
    Wohlgemuth I; Beringer M; Rodnina MV
    EMBO Rep; 2006 Jul; 7(7):699-703. PubMed ID: 16799464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release.
    Jin H; Kelley AC; Loakes D; Ramakrishnan V
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8593-8. PubMed ID: 20421507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2'/3'-O-peptidyl adenosine as a general base catalyst of its own external peptidyl transfer: implications for the ribosome catalytic mechanism.
    Changalov MM; Ivanova GD; Rangelov MA; Acharya P; Acharya S; Minakawa N; Földesi A; Stoineva IB; Yomtova VM; Roussev CD; Matsuda A; Chattopadhyaya J; Petkov DD
    Chembiochem; 2005 Jun; 6(6):992-6. PubMed ID: 15812855
    [No Abstract]   [Full Text] [Related]  

  • 25. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity.
    Brunelle JL; Youngman EM; Sharma D; Green R
    RNA; 2006 Jan; 12(1):33-9. PubMed ID: 16373492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Wintermeyer W
    Q Rev Biophys; 2006 Aug; 39(3):203-25. PubMed ID: 16893477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.
    Wohlgemuth I; Brenner S; Beringer M; Rodnina MV
    J Biol Chem; 2008 Nov; 283(47):32229-35. PubMed ID: 18809677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center.
    Kostopoulou ON; Papadopoulos G; Kouvela EC; Kalpaxis DL
    Pharmazie; 2013 Jul; 68(7):616-21. PubMed ID: 23923646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes.
    Amarantos I; Kalpaxis DL
    Nucleic Acids Res; 2000 Oct; 28(19):3733-42. PubMed ID: 11000265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An apparent conformational change in tRNA(Phe) that is associated with the peptidyl transferase reaction.
    Odom OW; Hardesty B
    Biochimie; 1987 Sep; 69(9):925-38. PubMed ID: 3126830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SPARK--a novel method to monitor ribosomal peptidyl transferase activity.
    Polacek N; Swaney S; Shinabarger D; Mankin AS
    Biochemistry; 2002 Oct; 41(39):11602-10. PubMed ID: 12269803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The path to perdition is paved with protons.
    Green R; Lorsch JR
    Cell; 2002 Sep; 110(6):665-8. PubMed ID: 12297040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release.
    Youngman EM; Brunelle JL; Kochaniak AB; Green R
    Cell; 2004 May; 117(5):589-99. PubMed ID: 15163407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition.
    Bayfield MA; Dahlberg AE; Schulmeister U; Dorner S; Barta A
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10096-101. PubMed ID: 11517305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451.
    Erlacher MD; Lang K; Shankaran N; Wotzel B; Hüttenhofer A; Micura R; Mankin AS; Polacek N
    Nucleic Acids Res; 2005; 33(5):1618-27. PubMed ID: 15767286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center.
    Yanshina DD; Bulygin KN; Malygin AA; Karpova GG
    FEBS J; 2015 Apr; 282(8):1554-66. PubMed ID: 25702831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The transition state for formation of the peptide bond in the ribosome.
    Gindulyte A; Bashan A; Agmon I; Massa L; Yonath A; Karle J
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13327-32. PubMed ID: 16938893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.